Оксид серы как написать

Сероводород

Получение
сероводорода

  • Получение из простых веществ:

S + Н2 = H2S

  • Взаимодействие минеральных кислот и сульфидов металлов, расположенных в ряду напряжений левее железа:

FeS + 2HCI = H2S↑ + FeCl2

  • Действие концентрированной H2SO4 (без избытка) на щелочные и щелочно-земельные металлы:

5H2SO4(конц.) + 8Na = H2S↑ + 4Na2SO4 + 4H2О

  • Гидролиз некоторых сульфидов:

AI2S3 + 6Н2О = 3H2S↑ + 2Аl(ОН)3

  • Нагревание парафина с серой:

C40H82
+ 41S = 41Н2S+40С

Видео Получение и обнаружение сероводорода

Физические
свойства и строение сероводорода

Сероводород H2S – это бинарное летучее водородное соединение соединение с серой. H2S
— бесцветный ядовитый газ, с неприятным удушливым
запахом тухлых яиц. При концентрации > 3 г/м3 вызывает смертельное отравление.

Сероводород тяжелее воздуха и легко конденсируется в бесцветную жидкость. Растворимость в воде H2S при обычной температуре составляет 2,5.

В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода представляет собой сцепленные между собой атомы H-S-H с валентным углом 92,1о.

cтроение сероводорода

Качественная реакция для обнаружения сероводорода

Для
обнаружения анионов S2- и сероводорода используют
реакцию газообразного H2S с Pb(NO3)2:

H2S + Pb(NO3)2 = 2HNO3 + PbS↓ черный
осадок.

Влажная бумага, смоченная в растворе Pb(NO3)2 чернеет в присутствии H2S из-за получения черного осадка PbS.

Химические свойства серы

H2S является сильным восстановителем

При взаимодействии H2S с окислителями образуются различные вещества — S, SО2, H2SO4

  • Окисление кислородом воздуха:

2H2S + 3О2(избыток) = 2SО2↑ + 2Н2О

2H2S + О2(недостаток) = 2S↓ + 2Н2О

  • Окисление галогенами:

H2S + Br2 = S↓ + 2НВr

H2S + Cl2 → 2HCl + S↓

H2S + 4Cl2 + 4H2O → H2SO4 + 8HCl

  • Взаимодействие с кислотами-окислителями:

3H2S + 8HNО3(разб.) = 3H2SO4 + 8NO + 4Н2О

H2S + 8HNО3(конц.) = H2SO4 + 8NО2↑ + 4Н2О

H2S + H2SO4(конц.) = S↓ + SО2↑ + 2Н2О

  • Взаимодействие со сложными окислителями:

5H2S + 2KMnO4 + 3H2SO4 = 5S↓ + 2MnSO4 + K2SO4 + 8Н2О

5H2S + 6KMnO4 + 9H2SO4 = 5SО2 + 6MnSO4 + 3K2SO4 + 14Н2О

H2S + 2FeCl3 = S↓ + 2FeCl2 + 2HCl

2H2S + SO2 = 2H2O + 3S

3H2S + K2Cr2O7 + 4H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 7H2O

  • Сероводородная кислота H2S двухосновная кислота и диссоциирует по двум ступеням:

1-я ступень:
H2S → Н+ + HS

2-я ступень:
HS → Н+ + S2-

H2S очень слабая
кислота
, несмотря на это имеет характерные для кислот химические свойства. Взаимодействует:

  • с активными металлами

H2S + Mg = Н2↑ + MgS

  • с малоактивными металлами (Аg, Си, Нg) при совместном присутствии окислителей:

2H2S + 4Аg + O2 = 2Ag2S↓ + 2Н2O

  • с основными оксидами:

H2S + ВаО = BaS + Н2O

  • со щелочами:

H2S + NaOH(недостаток) = NaHS + Н2O

H2S + 2NaOH(избыток)  → Na2S + 2H2O

  • с аммиаком:

H2S + 2NH3(избыток) = (NH4)2S

  • с некоторыми солями сильных кислот, если образующийся сульфид металла нерастворим в воде и в сильных кислотах:

CuSO4 + H2S = CuS↓ + H2SO4

H2S + Pb(NO3)2 → PbS↓ + 2HNO3

Реакция
с нитратом свинца в растворе – это качественная реакция
на сероводород и сульфид-ионы.

Видео Взаимодействие сероводорода с нитратом свинца

Сульфиды

Получение сульфидов

  • Непосредственно из простых веществ:

S + Fe FeS

S + Mg → MgS

S + Ca → CaS

  • Взаимодействие H2S с растворами щелочей:

H2S + 2NaOH = 2H2O + Na2S

H2S + NaOH = H2O + NaHS

  • Взаимодействие H2S или (NH4)2S с растворами солей:

H2S + CuSO4 = CuS↓ + H2SO4

H2S + 2AgNO3 = Ag2S↓ + 2HNO3

Pb(NO3)2 + Н2S →  PbS↓ + 2НNO3

ZnSO4 + Na2S → ZnS↓ + Na2SO4

  • Восстановление сульфатов при прокаливании с углем:

Na2SO4 + 4С = Na2S + 4СО

Физические свойства сульфидов

Сульфиды – это бинарные соединения серы с элементами с меньшей электроотрицательностью, в том числе с некоторыми неметаллами (С, Si, Р, As и др.).

По растворимости
в воде
и кислотах сульфиды классифицируют
на:

  • растворимые в воде —  сульфиды щелочных металлов и аммония;
  • нерастворимые в воде, но растворимые в минеральных кислотах — сульфиды металлов, расположенных до железа в ряду активности (белые и цветные сульфиды ZnS, MnS, FeS, CdS);
  • нерастворимые ни в воде, ни в минеральных кислотах — черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS)
  • гидролизуемые водой — сульфиды трехвалентных металлов (алюминия и хрома (III))

По цвету сульфиды можно разделить на:

  • Чёрные – HgS, Ag2S, PbS, CuS, FeS,
    NiS;
  • Коричневые – SnS, Bi2S3;
  • Оранжевые – Sb2S3, Sb2S5;
  • Жёлтые – As2S3, As2S5,
    SnS2, CdS;
  • Розовые — MnS
  • Белые – ZnS, Al2S3, BaS,
    CaS;

Химические свойства сульфидов

Обратимый гидролиз сульфидов

  • Хорошо растворимыми в воде являются сульфиды щелочных металлов и аммония, но в водных растворах они в значительной степени подвергаются гидролизу. Реакция среды — сильнощелочная:

K2S + H2O ⇄ KHS + KOH

S2- + H2O → HS + ОН

  • Сульфиды щелочно-земельных металлов и Mg, при взаимодействии с водой подвергаются полному гидролизу и переходят в растворимые кислые соли — гидросульфиды:

2CaS + 2НОН
= Ca(HS)2 + Са(ОН)2

При нагревании растворов сульфидов гидролиз протекает и по 2-й ступени:

HS + H2O → H2S↑ + ОН

Необратимый
гидролиз сульфидов

  • Сульфиды некоторых металлов (Cr2S3, Fe2S3, Al2S3) подвергаются необратимому гидролизу, полностью разлагаясь в водных растворах:

Al2S3 + 6H2O = 3H2S↑ + 2AI(OH)3↓

Нерастворимые
сульфиды
гидролизу не подвергаются

NiS + HСl ≠

  • Некоторые из сульфидов растворяются в сильных кислотах:

FeS + 2HCI =
FeCl2 + H2S↑

ZnS + 2HCI =
ZnCl2 + H2S↑

CuS + 8HNO3 → CuSO4 + 8NO2 + 4H2O

CuS + 4H2SO4(конц. гор.) → CuSO4 + 4SO2 + 4H2O

MnS + 3HNO3 = MnSO4 + 8NO2 + 4H2O

  • Сульфиды Ag2S, HgS, Hg2S, PbS, CuS не pacтворяются не только в воде, но и во многих кислотах.
  • Сульфиды обладают восстановительными свойствами и вступают в реакции с окислителями:

PbS + 4H2O2 → PbSO4 + 4H2O

СuS + Cl2 → CuCl2 + S

  • Окислительный обжиг сульфидов является
    важной стадией переработки сульфидного сырья в различных производствах

2ZnS + 3O2 = 2ZnO + 2SO2

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

2CuS + 3O2 → 2CuO + 2SO2

2Cr2S3 + 9O2 → 2Cr2O3 + 6SO2

Взаимодействия
сульфидов с растворимыми солями свинца, серебра, меди являются качественными на ион S2−:

Na2S + Pb(NO3)2 → PbS↓ + 2NaNO3

Na2S + 2AgNO3 → Ag2S↓ + 2NaNO3

Na2S + Cu(NO3)2 → CuS↓ + 2NaNO3

Оксид серы
(IV), диоксид серы, сернистый газ, сернистый ангидрид (SO2)

Способы получения сернистого газа

  • Окисление серы, сероводорода и сульфидов кислородом воздуха:

S + O2 → SO2

2H2S + 3O2 → 2SO2 + 2H2O

2CuS + 3O2 → 2SO2 + 2CuO

  • Действие высокой температуры на сульфиты (термическое разложение):

CaSO3 = СаО + SO2

  • Действие сильных кислот на сульфиты:

Na2SO3 + 2HCl = SO2 + Н2O + 2NaCI

  • Взаимодействие концентрированной H2SO4 с восстановителями, например с неактивными металлами:

2H2SO4 + Сu = SO2↑ + CuSO4 + 2Н2O

Физические
свойства сернистого газа

При обычной температуре SO2 — газ с резким запахом без цвета. В воде растворим хорошо — при 20°С в 1 л воды растворяется 40 л SO2.

Химические свойства сернистого газа

SO2 – типичный кислотный оксид. За счет того, что сера находится в промежуточной степени окисления (+4) SO2 может проявлять свойства как окислителя так и восстановителя.

  • При растворении в воде SO2 частично соединяется с молекулами воды с образованием слабой сернистой кислоты.

SO2 + H2O ↔ H2SO3

  • Как
    кислотный оксид, SO2 вступает
    в реакции с щелочами и оксидами щелочных и щелочноземельных металлов:

SO2 + СаО = CaSO3

SO2 + Na2O → Na2SO3

SO2 + NaOH = NaHSO3

SO2 + 2NaOH = Н2O + Na2SO3

  • При взаимодействии с окислителями SO2 проявляет восстановительные свойства. При этом степень окисления серы повышается:

2SO2 + O2 ↔ 2SO3

SO2 + Br2 + 2H2O → H2SO4 + 2HBr

SO2 + 2HNO3 → H2SO4 + 2NO2

SO2 + O3 → SO3 + O2

SO2 + PbO2 → PbSO4

5SO2 + 2H2O + 2KMnO4 → 2H2SO4 + 2MnSO4 + K2SO4

Обесцвечивание раствора перманганата калия KMnO4  является качественной реакцией для обнаружения сернистого газа и сульфит-иона

  • SO2 проявляет окислительные свойства при взаимодействии с сильными восстановителями, восстанавливаясь чаще всего до свободной серы:

SO2 + 2Н2S → 3S↓ + 2H2O

SO2 + 2CO → S↓ +2СО2

SO2 + С → S↓ + СO2

Оксид серы (VI), триоксид серы, серный ангидрид (SO3)

Способы получения серного ангидрида

  • SO3 можно получить из SO2 путем каталитического окисления последнего кислородом:

2SO2 + O2 ↔ 2SO3

  • Окислением SO2 другими окислителями:

SO2 + O3 → SO3 + O2

SO2 + NO2 → SO3 + NO

  • Разложением сульфата железа (III):

Fe2(SO4)3 → Fe2O3 + 3SO3

Физические
свойства серного ангидрида

При обычных условиях SO3 представляет собой бесцветную жидкость с характерным резким
запахом. На воздухе SO3 «дымит» и сильно
поглощает влагу.

SO3 – тяжелее
воздуха, хорошо растворим в воде.

SO3 ядовит!

Химические свойства серного
ангидрида

Оксид серы (VI) – это кислотный оксид.

  • Хорошо поглощает влагу и реагирует с водой образуя серную кислоту:

SO3 + H2O → H2SO4

  • Как
    кислотный оксид, SO3 взаимодействует с щелочами и
    основными оксидами, образуются средние или кислые соли:

SO3 + 2NaOH(избыток) → Na2SO4 + H2O

SO3 + NaOH(избыток) → NaHSO4

SO3 + MgO → MgSO4 (при сплавлении):

SO3 + ZnO = ZnSO4

  • SO3 проявляет
    сильные окислительные свойства, так
    как сера в находится в максимальной степени окисления (+6).

Вступает в реакции с восстановителями:

SO3 + 2KI → I2 + K2SO3

3SO3 + H2S → 4SO2 + H2O

5SO3 + 2P → P2O5 + 5SO2

  • При растворении в концентрированной
    серной кислоте образует олеум (раствор
    SO3 в H2SO4).

Сернистая кислота (H2SO3)

Способы
получения сернистой кислоты

При растворении в воде SO2 образует слабую сернистую кислоту, которая сразу частично разлагается:

SO2 + H2O ↔ H2SO3

Физические
свойства сернистой кислоты

Сернистая кислота H2SO3 двухосновная кислородсодержащая кислота. При обычных условиях неустойчива.

Валентность серы
в сернистой кислоте равна IV, а степень окисления
+4.

строение сернистой кислоты

Химические свойства сернистой кислоты

Общие свойства
кислот

  • Сернистая кислота – слабая кислота, диссоциирует в две стадии. Образует два типа солей:
  • кислые – гидросульфиты

H2SO3 ↔ HSO3 + H+

  • средние – сульфиты

HSO3↔ SO32- + H+

  • Сернистая кислота самопроизвольно распадается на SO2 и H2O:

H2SO3 ↔ SO2 + H2O

Соли сернистой кислоты, сульфиты и гидросульфиты

Способы
получения сульфитов

Соли сернистой кислоты получаются при взаимодействии SO2 с щелочами и оксидами щелочных и щелочноземельных металлов:

SO2 + СаО = CaSO3

SO2 + Na2O → Na2SO3

SO2 + NaOH = NaHSO3

SO2 + 2NaOH = Н2O + Na2SO3

Физические
свойства сульфитов

Сульфиты
щелочных металлов и аммония растворимы в воде, сульфиты остальных металлов — нерастворимы
или не существуют.

Гидросульфиты
металлов хорошо растворимы в Н2O, а некоторые из
них, такие как Ca(HSO3)2 существуют
только в растворе.

Химические свойства сульфитов

Cернистая кислота – двухосновная, образует нормальные (средние) соли — сульфиты Mex(SO3)y и кислые соли — гидросульфиты Me(HSO3)x.

  • Водные растворы сульфитов подвергаются гидролизу. Реакция среды – щелочная (окрашивают лакмус в синий цвет):

SO3 + Н2O = HSO3 + ОН

Na2SO3 + Н2O = NaHSO3 + NaOH

Реакции, протекающие без изменения степени окисления:

  • Реакция с сильными кислотами:

Na2SO3 + 2HCl = 2NaCl +
SO2↑ + Н2O

NaHSO3 + HCl = NaCl + SO2↑ + Н2O

  • Термическое разложение сульфитов:

CaSO3 = СаО + SO2

  • Нормальные сульфиты в водных растворах, при избытке SO2, переходят в гидросульфиты:

CaSO3 + SO2 + Н2O = Ca(HSO3)2

  • Ионно-обменные реакции с другими солями, протекающие с образованием нерастворимых сульфитов:

Na2SO3 + ZnCl2 = ZnSO3↓ + 2NaCl

Окислительно-восстановительные реакции

Сульфиты, также как и SO2, могут быть как восстановителями, так и окислителями, т.к. атомы серы в анионах находятся в промежуточной степени окисления +4

  • Окисление водных растворов сульфитов, и гидросульфитов до сульфатов:

Na2SO3 + Вr2 + Н2O = Na2SO4 + 2НВr

5K2SO3 + 2КМnO4 + 3H2SO4 = 6K2SO4 + 2MnSO4 + 3Н2O

Na2SO3 + HNO3 = 2NaNO3 + SO2 + H2O

  • Твердые сульфиты при хранении на воздухе также медленно окисляются до сульфатов:

2Na2SO3 + O2 = 2Na2SO4

  • При нагревании сухих сульфитов с активными восстановителями (С, Mg, Al, Zn) сульфиты превращаются в сульфиды:

Na2SO3 + ЗС = Na2S + ЗСО

  • При нагревании сухих сульфитов до высоких температур сульфиты диспропорционируют, превращаются в смесь сульфатов и сульфидов:

4K2SO3 = 3K2SO4 + K2S

Серная кислота (H2SO4)

Способы
получения серной кислоты

В промышленности серную кислоту производят из серы, сульфидов
металлов, сероводорода и др.

Наиболее часто серную кислоту получают из пирита FeS2.

Основные стадии получения серной кислоты включают:

1.Обжиг пирита в кислороде в печи для обжига с получением сернистого газа:

4FeS2 +
11O2 → 2Fe2O3 +
8SO2 + Q

2. Очистка полученного сернистого газа от примесей в циклоне, электрофильтре.

3. Осушка сернистого газа в сушильной башне

4. Нагрев очищенного газа в теплообменнике.

5. Окисление сернистого газа в серный ангидрид в контактном аппарате:

2SO2 + O2 ↔ 2SO3 + Q

6. Поглощение серного ангидрида серной кислотой в поглотительной башне – получение олеума.

производство серной кислоты

Физические
свойства, строение серной кислоты

При обычных условиях серная кислота – тяжелая бесцветная маслянистая жидкость, хорошо растворимая в воде. Максимальная плотность равна 1,84 г/мл

При растворении серной кислоты в воде выделяется большое количество теплоты. Поэтому, по правилам безопасности в лаборатории при приготовлении разбавленного раствора серной кислоты во избежание разбрызгивания необходимо наливать серную кислоту в воду тонкой струйкой по стеклянной палочке при постоянном перемешивании. Но не наоборот! 

Валентность серы в серной кислоте равна VI.

строение серной кислоты

Качественные
реакции для обнаружения серной кислоты и сульфат ионов

Для обнаружения сульфат-ионов используют реакцию с растворимыми солями бария. В результате взаимодействия, образуется белый кристаллический осадок сульфата бария:

BaCl2 + Na2SO4 BaSO4↓ + 2NaCl

Видео Взаимодействие хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион).

Химические свойства серной кислоты

Серная кислота — сильная двухосновная кислота, образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

  • Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени и достаточно по второй ступени:

H2SO4 ⇄ H+ + HSO4

HSO4 ⇄ H+ + SO42–

Характерны все свойства кислот:

  • Реагирует с основными оксидами, основаниями, амфотерными оксидами, амфотерными гидроксидами и аммиаком:

H2SO4 + MgO → MgSO4 + H2O

H2SO4 + КОН → KHSО4 + H2O

H2SO4 + 2КОН → К24 + 2H2O

3H2SO4 + 2Al(OH)3 → Al2(SO4)3 + 6H2O

H2SO4 + NH3 → NH4HSO4

  • Вытесняет более слабые кислоты из их солей в растворе (карбонаты, сульфиды и др.) и летучие кислоты из их солей (кроме солей HBr и HI):

Н2SO4 + 2NaHCO3 → Na2SO4 + CO2 + H2O

H2SO4 + Na2SiO3 → Na2SO4 + H2SiO3

  • Концентрированная серная кислота реагирует с твердыми солями, например нитратом натрия, хлорида натрия.

NaNO3(тв.) + H2SO4 → NaHSO4 + HNO3

NaCl(тв.) + H2SO4 → NaHSO4 + HCl

  • Вступает в обменные реакции с солями:

H2SO4 + BaCl2 → BaSO4 + 2HCl

  • Взаимодействует с металлами:

Разбавленная серная кислота взаимодействует с металлами, расположенными в ряду напряжения металлов до водорода. В результате реакции образуются соль и водород:

H2SO4(разб.) + Fe → FeSO4 + H2

H2SO4 + Zn = ZnSO4
+ H2

Концентрированная серная кислота — сильный окислитель. Реакция с металлами протекает без вытеснения водорода из кислоты. В зависимости от активности металла образуются различные продукты реакции:

  • Активные металлы и цинк при обычной температуре с концентрированной серной кислотой образуют соль, сероводород (или серу) и воду:

H2SO4 + Na = Na2SO4 + Н2S↑ + H2O

5H2SO4(конц.) + 4Zn → 4ZnSO4 + H2S↑ + 4H2O

  • Металлы средней активности с концентрированной H2SO4 образуют соль, серу и воду:

4H2SO4 + 3Mg → 3MgSO4 + S + 4H2O

  • Такие металлы, как железо Fe,
    алюминий Al, хром Cr пассивируются
    концентрированной
    серной кислотой на холоде. При нагревании,
    при удалении оксидной пленки реакция возможна.

6H2SO4(конц.) + 2Fe → Fe2(SO4)3 + 3SO2 + 6H2O

6H2SO4(конц.) + 2Al → Al2 (SO4)3 + Н2S↑ + 6H2O

  • Неактивные металлы восстанавливают концентрированную серную кислоту до сернистого газа:

2H2SO4(конц.) + Cu → CuSO4 + SO2 ↑ + 2H2O

2H2SO4(конц.) + Hg → HgSO4 + SO2 ↑ + 2H2O

2H2SO4(конц.) + 2Ag → Ag2SO4 + SO2↑+ 2H2O

взаимодействие серной кислоты с металлами

  • В реакциях с неметаллами концентрированная серная кислота также проявляет окислительные свойства:

5H2SO4(конц.) + 2P → 2H3PO4 + 5SO2↑ + 2H2O

2H2SO4(конц.) + С → СО2↑ + 2SO2↑ + 2H2O

2H2SO4(конц.) + S → 3SO2 ↑ + 2H2O

3H2SO4(конц.) + 2KBr → Br2↓ + SO2↑ + 2KHSO4 + 2H2O

5H2SO4(конц.) + 8KI → 4I2↓ + H2S↑ + K2SO4 + 4H2O

H2SO4(конц.) + 3H2S → 4S↓ + 4H2O (комнатная температура)

H2SO4(конц.) + H2S = S↓ + SО2↑ + 2Н2О (при нагревании)

H2SO4(конц.) + 2HBr = Br2 + SO2 + 2H2O

  • Концентрированная серная кислота широко используется в химических процессах как водоотнимающий агент, т.к. проявляет сильное водоотнимающее действие. В органической химии ее используют при получении спиртов, простых и сложных эфиров, альдегидов и т.д.

Соли серной кислоты, сульфаты, гидросульфаты

Способы
получения солей серной кислоты

Сульфаты можно получить при взаимодействии серной кислоты с металлами,
оксидами, гидроксидами (см. Химические свойства серной кислоты). А также при
взаимодействии с другими солями, если продуктом реакции является нерастворимое
соединение.

Физические
свойства солей серной кислоты

Кристаллы разного цвета. Многие средние и кислые сульфаты растворимы
в воде. Плохо растворяются или не растворяются в воде сульфаты многозарядных
щёлочноземельных металлов (BaSO4, RaSO4), сульфаты лёгких
щёлочноземельных металлов (CaSO4, SrSO4) и сульфат свинца.

Средние сульфаты щелочных металлов термически устойчивы. Кислые
сульфаты щелочных металлов при нагревании разлагаются.

Многие средние сульфаты образуют устойчивые кристаллогидраты:

Na2SO4 ∙ 10H2O − глауберова
соль

CaSO4 ∙ 2H2O − гипс

2CaSO4 xH2O –
алебастр

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Na2CO3 ∙ 10H2O −
кристаллическая сода

KАl(SO4)2 x 12H2O
– алюмокалиевые квасцы.

Химические свойства солей серной кислоты

Разложение сульфатов на различные классы соединений в зависимости от металла, входящего в состав соли.

  • Сульфаты щелочных металлов плавятся без разложения.
  • Кислые сульфаты щелочных металлов разлагаются с отщеплением воды:

2KHSO4 → K2S2O7
+ H2O↑.

  • Сульфаты металлов средней активности разлагаются на соответствующие оксиды:

ZnSO4
= ZnO + SO3

FeSO4
= 2Fe2O3 + 4SO2 + O2

2CuSO4 → 2CuO + SO2 + O2 (SO3)

2Al2(SO4)3 → 2Al2O3 + 6SO2 + 3O2

2Cr2(SO4)3 → 2Cr2O3 + 6SO2 + 3O2

  • Сульфаты тяжёлых или малоактивных металлов разлагаются с образованием металла и кислорода:

HgSO4 = Hg + SO2 + O2

  • Некоторые сульфаты проявляют окислительные свойства и вступают в реакции с простыми веществами:

CaSO4 +
C = CaO + SO2 + CO

BaSO4 +
4C = BaS + 4CO

Содержание

  1. Получение
  2. Химические свойства
  3. Применение
  4. Токсическое действие
  5. Биологическая роль
  6. Воздействие на атмосферу

Оксид серы(IV) — соединение серы с кислородом состава SO2. В нормальных условиях представляет собой бесцветный газ с характерным резким запахом. В высоких концентрациях токсичен. Под давлением сжижается при комнатной температуре. Растворяется в воде с образованием нестойкой сернистой кислоты; растворимость 11, 5 г/100 г воды при 20 °C, снижается с ростом температуры. Растворяется также в этаноле и серной кислоте. Один из основных компонентов вулканических газов.

Оксид серы​(IV)​
Общие
Систематическое
наименование
Оксид серы​(IV)​
Хим. формула SO2
Рац. формула SO2
Физические свойства
Состояние бесцветный газ
Молярная масса 64,054 г/моль
Плотность 0,002927 г/см³
Энергия ионизации 12,3 ± 0,1 эВ
Термические свойства
Температура
 • плавления −75,5 °C
 • кипения −10,01 °C
Энтальпия
 • образования −296,90 кДж/моль
Давление пара 3,2 ± 0,1 атм
Химические свойства
Растворимость
 • в воде 11,5 г/100 мл
Классификация
Рег. номер CAS [7446-09-5]
PubChem 1119
Рег. номер EINECS 231-195-2
SMILES

O=S=O

InChI

1S/O2S/c1-3-2

RAHZWNYVWXNFOC-UHFFFAOYSA-N

Кодекс Алиментариус E220
RTECS WS4550000
ChEBI 18422
ChemSpider 1087
Безопасность
Предельная концентрация 10 мг/м³
Токсичность Класс опасности III
Пиктограммы ECB Пиктограмма «T: Токсично» системы ECB
NFPA 704

Получение

Промышленный способ получения — сжигание серы или обжиг сульфидов, в основном — пирита:

.}

В лабораторных условиях и в природе SO2 получают воздействием сильных кислот на сульфиты и гидросульфиты. Образующаяся сернистая кислота H2SO3 сразу разлагается на SO2 и H2O:

{mathsf  {Na_{2}SO_{3}+H_{2}SO_{4}rightarrow Na_{2}SO_{4}+H_{2}SO_{3}}},
{mathsf  {H_{2}SO_{3}rightarrow H_{2}O+SO_{2}uparrow }}.

Химические свойства

Относится к кислотным оксидам. Растворяется в воде с образованием сернистой кислоты (при обычных условиях реакция обратима):

{mathsf  {SO_{2}+H_{2}Orightleftarrows H_{2}SO_{3}}}.

С щелочами образует сульфиты:

{mathsf  {2NaOH+SO_{2}rightarrow Na_{2}SO_{3}+H_{2}O}}.

Химическая активность SO2 весьма велика. Наиболее ярко выражены восстановительные свойства SO2, степень окисления серы в таких реакциях повышается:

{mathsf  {SO_{2}+Br_{2}+2H_{2}Orightarrow H_{2}SO_{4}+2HBr}},
{mathsf  {SO_{2}+I_{2}+2H_{2}Orightarrow H_{2}SO_{4}+2HI}},
,}
,}
{mathsf  {Fe_{2}(SO_{4})_{3}+SO_{2}+2H_{2}Orightarrow 2FeSO_{4}+2H_{2}SO_{4}}}.

Предпоследняя реакция является качественной реакцией на сульфит-ион SO32− и на SO2 (обесцвечивание фиолетового раствора).

В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства. Например, для извлечения серы из отходящих газов металлургической промышленности используют восстановление SO2 оксидом углерода(II):

{mathsf  {SO_{2}+2COrightarrow 2CO_{2}+S}}.

Или для получения фосфорноватистой кислоты:

.}

Применение

Большая часть оксида серы(IV) используется для производства сернистой кислоты. Используется также в виноделии в качестве консерванта (пищевая добавка E220). Так как этот газ убивает микроорганизмы, им окуривают овощехранилища и склады. Оксид серы(IV) используется для отбеливания соломы, шёлка и шерсти, то есть материалов, которые нельзя отбеливать хлором. Применяется он также и в качестве растворителя в лабораториях. Оксид серы(IV) применяется также для получения различных солей сернистой кислоты.

Токсическое действие

Skull and Crossbones.svg

Оксид серы (IV) SO2 (диоксид серы) в высоких дозах очень токсичен. Симптомы при отравлении сернистым газом — насморк, кашель, охриплость, сильное першение в горле и своеобразный привкус. При вдыхании сернистого газа более высокой концентрации — удушье, расстройство речи, затруднение глотания, рвота, возможен острый отёк лёгких.

При кратковременном вдыхании оказывает сильное раздражающее действие, вызывает кашель и першение в горле.

Длительное воздействие диоксида серы в малых концентрациях также может нести вред организму. Системное исследование, проведённое в 2011 году показывает связь между воздействием диоксида серы на организм и преждевременными родами у женщин.

  • ПДК (предельно допустимая концентрация):
    • в атмосферном воздухе максимально-разовая — 0,5 мг/м³, среднесуточная — 0,05 мг/м³;
    • в помещении (рабочая зона) — 10 мг/м³.

По степени воздействия на человеческий организм сернистый ангидрид относится к III классу опасности («умеренно-опасное химическое вещество») согласно ГОСТ 12.1.007-76.

Интересно, что чувствительность по отношению к SO2 весьма различна у отдельных людей, животных и растений. Так, среди растений наиболее устойчивы по отношению к сернистому газу берёза и дуб, наименее — роза, сосна и ель.

По данным исследования средний порог восприятия запаха может превышать ПДК (21 мг/м3), а у части людей порог был значительно выше среднего значения.

Биологическая роль

Роль эндогенного сернистого газа в физиологии организма млекопитающих ещё окончательно не выяснена. Сернистый газ блокирует нервные импульсы от рецепторов растяжения лёгких и устраняет рефлекс, возникающий в ответ на перерастяжение лёгких, стимулируя тем самым более глубокое дыхание.

Показано, что эндогенный сернистый газ играет роль в предотвращении повреждения лёгких, уменьшает образование свободных радикалов, оксидативный стресс и воспаление в лёгочной ткани, в то время как экспериментальное повреждение лёгких, вызываемое олеиновой кислотой, сопровождается, наоборот, снижением образования сернистого газа и активности опосредуемых им внутриклеточных путей и повышением образования свободных радикалов и уровня оксидативного стресса. Что ещё более важно, блокада фермента, способствующего образованию эндогенного сернистого газа, в эксперименте способствовала усилению повреждения лёгких, оксидативного стресса и воспаления и активации апоптоза клеток лёгочной ткани. И напротив, обогащение организма подопытных животных серосодержащими соединениями, такими, как глютатион и ацетилцистеин, служащими источниками эндогенного сернистого газа, приводило не только к повышению содержания эндогенного сернистого газа, но и к уменьшению образования свободных радикалов, оксидативного стресса, воспаления и апоптоза клеток лёгочной ткани.

Считают, что эндогенный сернистый газ играет важную физиологическую роль в регуляции функций сердечно-сосудистой системы, а нарушения в его метаболизме могут играть важную роль в развитии таких патологических состояний, как лёгочная гипертензия, гипертоническая болезнь, атеросклероз сосудов, ишемическая болезнь сердца, ишемия-реперфузия и др.

Показано, что у детей с врождёнными пороками сердца и лёгочной гипертензией повышен уровень гомоцистеина (вредного токсичного метаболита цистеина) и снижен уровень эндогенного сернистого газа, причём степень повышения уровня гомоцистеина и степень снижения выработки эндогенного сернистого газа коррелировала со степенью выраженности лёгочной гипертензии. Предложено использовать гомоцистеин как маркер степени тяжести состояния этих больных и указано, что метаболизм эндогенного сернистого газа может быть важной терапевтической мишенью у этих больных.

Также показано, что эндогенный сернистый газ понижает пролиферативную активность клеток гладких мышц эндотелия сосудов, угнетая активность MAPK-сигнального пути и одновременно активируя аденилатциклазный путь и протеинкиназу A. А пролиферация гладкомышечных клеток стенок сосудов считается одним из механизмов гипертензивного ремоделирования сосудов и важным звеном патогенеза артериальной гипертензии, а также играет роль в развитии стеноза (сужения просвета) сосудов, предрасполагающего к развитию в них атеросклеротических бляшек.

Эндогенный сернистый газ оказывает эндотелий-зависимое вазодилатирующее действие в низких концентрациях, а в более высоких концентрациях становится эндотелий-независимым вазодилататором, а также оказывает отрицательное инотропное действие на миокард (понижает сократительную функцию и сердечный выброс, способствуя снижению артериального давления). Этот вазодилатирующий эффект сернистого газа опосредуется через АТФ-чувствительные кальциевые каналы и кальциевые каналы L-типа («дигидропиридиновые»). В патофизиологических условиях эндогенный сернистый газ оказывает противовоспалительное действие и повышает антиоксидантный резерв крови и тканей, например при экспериментальной лёгочной гипертензии у крыс. Эндогенный сернистый газ также снижает повышенное артериальное давление и тормозит гипертензивное ремоделирование сосудов у крыс в экспериментальных моделях гипертонической болезни и лёгочной гипертензии. Последние (на 2015 год) исследования показывают также, что эндогенный сернистый газ вовлечён в регуляцию липидного метаболизма и в процессы ишемии-реперфузии.

Эндогенный сернистый газ также уменьшает повреждение миокарда, вызванное экспериментальной гиперстимуляцией адренорецепторов изопротеренолом, и повышает антиоксидантный резерв миокарда.

Воздействие на атмосферу

Из-за образования в больших количествах в качестве отходов диоксид серы является одним из основных газов, загрязняющих атмосферу.

Наибольшую опасность представляет собой загрязнение соединениями серы, которые выбрасываются в атмосферу при сжигании угольного топлива, нефти и природного газа, а также при выплавке металлов и производстве серной кислоты.

Антропогенное загрязнение серой в два раза превосходит природное. Серный ангидрид образуется при постепенном окислении сернистого ангидрида кислородом воздуха с участием света. Конечным продуктом реакции является аэрозоль серной кислоты в воздухе, раствор в дождевой воде (в облаках). Выпадая с осадками, она подкисляет почву, обостряет заболевания дыхательных путей, скрыто угнетающе воздействует на здоровье человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий чаще отмечается при низкой облачности и высокой влажности воздуха. Растения около таких предприятий обычно бывают густо усеяны мелкими некротическими пятнами, образовавшимися в местах оседания капель серной кислоты, что доказывает присутствие её в окружающей среде в существенных количествах. Пирометаллургические предприятия цветной и чёрной металлургии, а также ТЭЦ ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида. Необходимо отметить также, что диоксид серы имеет максимум в спектре поглощения света в ультрафиолетовой области (190—220 нм), что совпадает с максимумом в спектре поглощения озона. Это свойство диоксида серы позволяет утверждать, что наличие этого газа в атмосфере имеет также положительный эффект, предотвращая возникновение и развитие онкологических заболеваний кожи человека. Диоксид серы в атмосфере Земли существенно ослабляет влияние парниковых газов (диоксид углерода, метан) на рост температуры атмосферы. Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, Европы, Китая, европейской части России и Украины. В южном полушарии содержание его значительно ниже.

Оксид серы (IV) –  это кислотный оксид. Бесцветный газ с резким запахом, хорошо растворимый в воде.

Cпособы получения оксида серы (IV)

1. Сжигание серы на воздухе:

S    +   O2  →  SO2

2. Горение сульфидов и сероводорода:

2H2S   +   3O2  →   2SO2   +   2H2O

2CuS   +   3O2  →   2SO2   +   2CuO

3. Взаимодействие сульфитов с более сильными кислотами:

Например, сульфит натрия взаимодействует с серной кислотой:

Na2SO3    +   H2SO4    →  Na2SO4   +   SO2    +   H2O

4. Обработка концентрированной серной кислотой неактивных металлов.

Например, взаимодействие меди с концентрированной серной кислотой:

Cu    +   2H2SO4   →   CuSO4   +   SO2   +   2H2O

Химические свойства оксида серы (IV)

Оксид серы (IV) – это типичный кислотный оксид. За счет серы в степени окисления +4 проявляет свойства окислителя и восстановителя.

1. Как кислотный оксид, сернистый газ реагирует с щелочами и оксидами щелочных и щелочноземельных металлов.

Например, оксид серы (IV) реагирует с гидроксидом натрия. При этом образуется либо кислая соль (при избытке сернистого газа), либо средняя соль (при избытке щелочи):

SO2   +   2NaOH(изб)   →   Na2SO3   +   H2O

SO2(изб)   +   NaOH  → NaHSO3

Еще пример: оксид серы (IV) реагирует с основным оксидом натрия:

SO2  +  Na2O   →  Na2SO3 

2. При взаимодействии с водой SO2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.

SO2  +   H2O   ↔  H2SO3  

3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.

Например, оксид серы окисляется кислородом на катализаторе в жестких условиях. Реакция также сильно обратимая:

2SO2    +   O2    ↔  2SO3

Сернистый ангидрид обесцвечивает бромную воду:

SO2   +   Br2  +   2H2O   →  H2SO4  +  2HBr

Азотная кислота очень легко окисляет сернистый газ:

SO2   +   2HNO3   →  H2SO4   +   2NO2

Озон также окисляет оксид серы (IV):

SO2    +   O3  →   SO3  +  O2

Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:

5SO2   +   2H2O   +   2KMnO4  → 2H2SO4   +   2MnSO4   +   K2SO4    

Оксид свинца (IV) также окисляет сернистый газ:

SO2   +   PbO2  → PbSO4

4. В присутствии сильных восстановителей SO2  способен проявлять окислительные свойства.

Например, при взаимодействии с сероводородом сернистый газ восстанавливается до молекулярной серы:

SO2    +   2Н2S    →    3S  +  2H2O

Оксид серы (IV) окисляет угарный газ и углерод:

SO2    +   2CO    →   2СО2    +    S 

SO2    +   С  →   S   +  СO2

Оксиды серы. Общая характеристика, химические свойства

Оксиды серы. Общая характеристика, химические свойства

Большинство школьников знают два оксида серы — SO2 и SO3.

Однако, это не все соединения, которые сера образует с кислородом.

Рассмотрим их все.

Монооксид серы — SO

  • Встречается только в виде разбавленной газовой фазы;
  • после концентрирования превращается в S2O2 (диоксид дисульфита);
  • SO имеет триплетное основное состояние, схожее с таковым у O2, то есть каждая молекула имеет по два неспаренных электрона;
  • молекула SO используется в реакциях органического синтеза (встраивается в молекулы алкенов, алкинов, диенов для получения молекул с трехчленными кольцами, содержащими серу);
  • монооксид серы обнаружен на Ио — спутнике Юпитера, а также в атмосфере Венеры, в комете Хейла — Боппа (или «Большая комета 1997 года»);
  • редко встречается в атмосфере Земли, поэтому токсичность в полной мере не выявлена;
  • обладает высокой воспламеняемостью, горит до образования ядовитого сернистого газа SO2.

Дисульфид серы — SO2

  • Токсичный газ, ответственен за запах сгоревших спичек;
  • в природе образуется в результате вулканической активности;
  • вне Земли встречается в атмосфере Венеры, где образует облака в результате конденсации, способствуя при этом глобальному потеплению на планете; а также на Ио, спутнике Юпитера (90% атмосферы)
  • промышленное значение сернистого газа в основном заключается в производстве серной кислоты;
  • SO2 может связываться с ионами металлов в качестве лиганда с образованием комплексов диоксида серы с металлом, обычно там, где переходный металл находится в степени окисления 0 или +1;
  • обладает антимикробными свойствами, используется в качестве консерванта для кураги, инжира (E220);
  • диоксид серы издавна применяется в производстве вина — служит антибиотиком и антиоксидантом, защищая вино от порчи и потемнения (окисления);
  • сернистый газ является сильным восстановителем, при этом обладает отбеливающим эффектом;
  • эндогенный диоксид серы играет важную физиологическую роль в регуляции работы сердца и кровеносных сосудов, а нарушение его метаболизма может привести к артериальной гипертензии, атеросклерозу, стенокардии.

Триоксид серы, серный ангидрид — SO3

  • Является значительным загрязнителем, основной компонент кислотных дождей;
  • имеет большое значение в промышленности, так как является прекурсором серной кислоты;
  • в сухой атмосфере обильно дымит, без запаха, но едкий;
  • на воздухе образуется прямым окислением сернистого газа;
  • в лаборатории триоксид серы можно получить путем двухстадийного пиролиза бисульфата натрия:
    2NaHSO4 → Na2S2O7 + H2O
    Na2S2O7 → Na2SO4 + SO3
  • серный ангидрид агрессивно гигроскопичен — теплота гидратации достаточна, чтобы смесь этого газа и древесины (или хлопка) могла воспламениться;
  • при вдыхании вызывает ожоги, обладает высокой коррозионной активностью.

Тетроксид серы — SO4

  • Этот оксид серы представляет собой группу химических соединений с формулой SO3 + Х, где Х лежит между 0 и 1;
  • здесь содержатся пероксогруппы (О-О), а степень окисления серы как в триоксиде серы, +6;
  • может быть выделен при низких температурах (78 К), после реакции SO3 с атомарным кислородом или фотолиза смесей SO3 — озон.

Монооксид дисеры, субоксид серы — S2O

  • Представляет собой бесцветный газ, который при конденсации образует твердое вещество бледного цвета, нестабильное при комнатной температуре;
  • Грамотрицательные бактерии Desulfovibrio desulfuricans способны производить S2O;
  • был обнаружен Питером Шенком в 1933 году.

Пoсле краткого обзора оксидов серы прилагаю таблицу двух важнейших оксидов серы — сернистого газа и серного ангидрида, так как именно они по большей части встречаются в заданиях ЕГЭ и ОГЭ по Химии.

Сравнительная характеристика оксидов серы SO2 и SO3

Реагент

Оксид серы IV – SO2

— Диоксид серы;

— газ с резким запахом;

— кислотный оксид;

— гибридизация серы – sp2;

— валентный угол — 120

Оксид серы VI – SO3

— Триоксид серы;

— бесцветная летучая жидкость;

— кислотный оксид;

— гибридизация серы — sp3;

— валентный угол 120

Получение

1) В промышленности:

S + O2 = SO2 (360 C)

4FeS + 7O2 = 2Fe2O3 + 4SO2 (t)

2) В лаборатории:

Na2SO3 + H2SO4 = Na2SO4 + SO2 + H2O (t)

Me + 2H2SO4 (k) = MeSO4 + SO2 + 2H2O

(Me = Cu, Hg, Bi, Ag)

2HBr + 2H2SO4 (k) = Br2 + SO2 + 2H2O

1) В промышленности:

2SO2 + O2 = 2SO3 (500 C, V2O5)

SO2 + O3 = SO3 + O2

2) В лаборатории:

2CaSO4 = 2CaO + 2SO3 (450 C)

2CuSO4 = 2CuO + 2SO3

Na2S2O7 = Na2SO4 + 2SO3

+ O2

2SO2 + O2 = 2SO3 + Q

+ H2O

SO2 + H2O = H2SO3

SO3 + H2O = H2SO4

+ H2O2

SO2 + H2O2 = H2SO4

+ Основные оксиды

SO2 + CaO = CaSO3

SO2 + Na2O = Na2SO3

SO3 + Na2O = Na2SO4

SO3 + CaO = CaSO4

+ Кислотные оксиды

SO2 + CO = S + 2CO2 (Al2O3, 500 C)

SO2 + NO2 = SO3 + NO (нитрозный способ получения серной кислоты)

+ Амфотерные оксиды

SO2 + Al2O3, BeO, ZnO ≠

SO3 + Fe2O3 = Fe2(SO4)3

+ Основания

SO2 + 2NaOH = Na2SO3 + H2O

SO2 + Me(OH)x ≠ (Me = Fe, Cr, Al, Sn)

SO2 + 2KOH (расплав) = 3K2SO4 + K2S + 4H2O (t)

SO3 + 2NaOH (разб.) = Na2SO4 + H2O

SO3 + Ca(OH)2 = CaSO4 + H2O

+ Кислоты

SO2 + 4HI = S↓ + 2I2 + 2H2O

SO2 + 2H2S = 3S + 2H2O

SO2 + 2HNO3 (k) = H2SO4 + 2NO2

SO2 + 2HNO2 (p) = H2SO4 + 2NO

SO3 + HF = HSO3F (45 C)

SO3 + HCl = HSO3Cl (20 C, в олеуме)

SO3 + H2SO4 + CaF2 = 2HSO3F + CaSO4

SO3 + H2SO4 (безводн.) = H2S2O7

3SO3 + H2S = 4SO2 + H2O

+ Соли

SO2 + Na2CO3 = Na2SO3 + CO2 (20 С)

SO2 + Na2SO3 = Na2S2O5 (в этаноле)

SO2 + PCl5 = PClO3 + SCl2O (50 — 60 C)

SO3 + MeF = MeSO3F (Me = Li, K, NH4)

SO3 + 2KI = K2SO3 + I2

SO3 + Na2S = Na2SO4

+ Комплексные соли

3SO2 + Na3[Al(OH)6] (P) = Al(OH)3 + 3NaHSO3

+ Неметалл

SO2 + O3 = SO3 + O2

SO2 + 2C = S↓ + 2CO2 (600 С)

SO2 + Cl2 = SO2Cl2 (солнечный свет)

SO2 + F2 = SO2F2 (20 С, Pt)

SO2 + 3F2 = SF6 + O2 (650 C)

SO2 + 2H2 = S↓ + 2H2O

SO2 + 3S = 2S2O (вакуум, эл. разряд)

2SO3 + C = 2SO2 + CO2

10SO3 + P4 = P4O10 + 10SO2

+ Металл

SO2 + Me + H2O = MeSO3 + H2 (активные Ме)

SO2 + Me = MeS2O4 (Me = Zn, Co; в смеси этанола иводы)

SO3 + Mg = MgO + SO2

ОВР

SO2 + Cl2 + 2H2O = 2HCl + H2SO4

SO2 + I2 + 2H2O = 2HI + H2SO4

5SO2 + 2KMnO4 + 2H2O = K2SO4 + 2MnSO4 + 2H2SO4

5SO2 + 2K2Cr2O7 + H2SO4 = K2SO4 + Cr2(SO4)3 + H2O

SO2 + 2FeCl3+ 2H2O = 2FeCl2 + H2SO4 + 2HCl

SO2 + 2CuCl2 + 2H2O = 2CuCl + 2HCl + H2SO4

SO3 + 2HCl = SO2 + Cl2 + H2O (t)

SO3 + 2HBr = SO2 + Br2 + H2O (0 C)

SO3 + 8HI = H2S + 4I2 + 3H2O (0 C)

Последние записи блога:

  • Серная кислота. Решение заданий Тестовой части ЕГЭ 2022
  • Азотная кислота. Задача №33 ЕГЭ 2022 по Химии. Полный разбор с объяснениями.
  • Азотная кислота. Решение заданий №7 ЕГЭ по Химии 2022
  • Алкены. Что нужно знать для решения заданий ЕГЭ по Химии.
  • Алканы. Что нужно знать для решения заданий ЕГЭ по Химии.

Оксид серы(IV)
Оксид серы(IV): химическая формула
Оксид серы(IV): вид молекулы
Общие
Систематическое наименование Оксид серы(IV)
Химическая формула SO2
Отн. молек. масса 64.054 а. е. м.
Молярная масса 64.054 г/моль
Физические свойства
Плотность вещества 2,927 г/л г/см³
Состояние (ст. усл.) бесцветный газ
Термические свойства
Температура плавления −75,5 °C
Температура кипения −10,01 °C
Химические свойства
Растворимость в воде 11,5 г/100 мл
Классификация
номер CAS [7446-09-5]

Окси́д се́ры(IV) (диокси́д се́ры, серни́стый газ, серни́стый ангидри́д) — SO2. В нормальных условиях представляет собой бесцветный газ с характерным резким запахом (запах загорающейся спички). Под давлением сжижается при комнатной температуре. Растворяется в воде с образованием нестойкой сернистой кислоты; растворимость 11,5 г/100 г воды при 20 °C, снижается с ростом температуры. Растворяется также в этаноле, серной кислоте. SO2 — один из основных компонентов вулканических газов.

Содержание

  • 1 Получение
  • 2 Химические свойства
  • 3 Применение
  • 4 Физиологическое действие
    • 4.1 Дополнительные сведения о токсичности

Получение

Промышленный способ получения — сжигание серы или обжиг сульфидов, в основном — пирита:

4FeS2 + 11O2 → 2Fe2O3 + 8SO2↑ + Q.

В лабораторных условиях SO2 получают воздействием сильных кислот на сульфиты и гидросульфиты:

Na2SO3 + H2SO4 → Na2SO4 + H2SO3.

Образующаяся сернистая кислота сразу разлагается на SO2 и H2O:

Na2SO3 + H2SO4 → Na2SO4 + H2O + SO2↑.

Также можно получить действием концентрированной серной кислоты на малоактивные металлы при нагревании:

2H2SO4 (конц.) + Cu → CuSO4 + SO2↑ + 2H2O.

Химические свойства

Спектр поглощения SO2 в ультрафиолетовом диапазоне

Относится к кислотным оксидам. Растворяется в воде с образованием сернистой кислоты (при обычных условиях реакция обратима):

SO2 + H2O ↔ H2SO3.

Со щелочами образует сульфиты:

SO2 + 2NaOH → Na2SO3 + H2O.

Химическая активность SO2 весьма велика. Наиболее ярко выражены восстановительные свойства SO2, степень окисления серы в таких реакциях повышается:

SO2 + Br2 + 2H2O → H2SO4 + 2HBr,

2SO2 + O2 → 2SO3 (требуется катализатор V2O5 и температура 450°),

5SO2 + 2KMnO4 + 2H2O → 2H2SO4 + 2MnSO4 + K2SO4.

Последняя реакция является качественной реакцией на сульфит-ион SO32- и на SO2 (обесцвечивание фиолетового раствора).

В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства. Например, для извлечения серы их отходящих газов металлургической промышленности используют восстановление SO2 оксидом углерода(II):

SO2 + 2CO → 2CO2 + S↓.

Или для получения фосфорноватистой кислоты:

PH3 + SO2 → H(PH2O2) + S↓

Применение

В пищевой промышленности диоксид серы используется как консервант и обозначается на упаковке под кодом Е220.

Физиологическое действие

SO2 токсичен. Симптомы при отравлении сернистым газом — насморк, кашель, охриплость, першение в горле. При вдыхании сернистого газа более высокой концентрации — удушье, расстройство речи, затруднение глотания, рвота, возможен острый отёк лёгких.

  • ПДК максимально-разового воздействия — 0,5 мг/м3

Дополнительные сведения о токсичности

Интересно, что чувствительность по отношению к SO2 весьма различна как у людей, так и у растений. Наиболее устойчивы по отношению к сернистому газу берёза и дуб, наименее — сосна и ель. Наиболее чувствительными к SO2 являются розы. При попадании на них сернистого газа они моментально белеют.

Wikimedia Foundation.
2010.

Сернистый газ, или оксид серы((IV)), образуется при сгорании серы, сероводорода или обжиге сульфидов:

При обычных условиях это бесцветный газ с характерным запахом. Ядовит.

Сернистый газ хорошо растворяется в воде — в (1) объёме воды при (0) °С может раствориться до (80) объёмов сернистого газа, а при комнатной температуре — до (40) объёмов. При этом происходит реакция с водой, и образуется сернистая кислота:

Оксид серы((IV)) проявляет и другие свойства кислотных оксидов: реагирует со щелочами, основными оксидами c образованием солей:

Степень окисления серы в оксиде — (+4). Это промежуточное значение, поэтому в окислительно-восстановительных реакциях он может быть и окислителем, и восстановителем. Так, свойства восстановителя проявляются в реакции с кислородом:

Свойства окислителя сернистый газ проявляет в реакции с сероводородом:

Оксид серы((IV)) выделяется в атмосферу при сжигании разных видов топлива и загрязняет её.

power-station-4911010_640.png

Рис. (1). Загрязнение воздуха

Сернистая кислота и её соли

Сернистая кислота

H2SO3

представляет собой водный раствор оксида серы((IV)) и в свободном состоянии не выделена. Это слабая двухосновная кислота, которая образует два ряда солей. Средние её соли называются сульфитами (

Na2SO3,CaSO3

), а кислые — гидросульфитами (

NaHSO3,Ca(HSO3)2

).

Сернистая кислота и её соли, так же как и оксид серы((IV)), в окислительно-восстановительных реакциях проявляют двойственные свойства — могут быть и окислителями, и восстановителями.

Сернистый газ уничтожает микроорганизмы, поэтому применяется для дезинфекции помещений, оборудования. Используется он как отбеливающее средство в производстве бумаги, тканей. Для отбеливания используются и соли: сульфит и гидросульфит натрия.

Источники:

Рис. 1. Загрязнение воздуха

https://cdn.pixabay.com/photo/2020/03/07/21/59/power-station-4911010_960_720.jpg

Поиск химических веществ по названиям или формулам.

Справочник содержит названия веществ и описания химических формул (в т.ч. структурные формулы и скелетные формулы).


Введите часть названия или формулу для поиска:

Общее число найденных записей: 299.
Показано записей: 20.

1. Оксид серы(IV)

Брутто-формула:
O2S

CAS# 7446-09-5

Названия

Русский:

Оксид серы(IV)(IUPAC) [Wiki]

;

двуокись серы

;

диоксид серы

;

сернистый ангидрид

;

сернистый газ

;

English:

Caswell No. 813

;

E 220

;

EINECS:231-195-2

;

Fermenicide liquid

;

Fermenicide powder

;

Fermenticide liquid

;

Schwefeldioxid

;

Sulfur dioxide(IUPAC) [Wiki]

;

Sulfur dioxide (SO2)

;

Sulfur oxide (SO2)

;

Sulfur superoxide

;

Sulfur(IV) oxide

;

Sulfurous acid anhydride

;

Sulfurous anhydride

;

Sulfurous oxide

;

Sulfuroxide

;

Sulfursuperoxide (6CI)

;

UN 1079

;

sulphur dioxide

;

2. Оксид серы(VI)

Брутто-формула:
O3S

CAS# 7446-11-9

Названия

Русский:

Оксид серы(VI) [Wiki]

;

серный ангидрид

;

серный газ

;

треокись серы

;

триоксид серы

;

English:

227692_ALDRICH

;

425478_ALDRICH

;

AC1Q6YFD

;

Sulfan

;

Sulfite radical anion

;

Sulfonylideneoxidane

;

Sulfur trioxide(CAS) [Wiki]

;

Sulfuric anhydride

;

Sulphur trioxide

;

UN 1829

;

oxosulfane dioxide

;

3. Пиросульфурил хлористый

Брутто-формула:
Cl2O5S2

CAS# 7791-27-7

Названия

Русский:

Пиросульфурил хлористый

;

дисеры(VI) пентаоксид-дихлорид

;

хлорангидрид пиросерной кислоты

;

English:

Chlorosulfonic anhydride

;

Disulfur pentoxydichloride

;

Disulfuryl chloride

;

PYROSULFURYL CHLORIDE

;

Sulfur pentoxydichloride

;

UN1817

;

Cl/S<_qq4O><_pp4O>/OS<_qq4O><_pp4O>Cl

4. метиловый спирт

Брутто-формула:
CH4O

CAS# 67-56-1

Названия

Русский:

Метанол(IUPAC) [Wiki]

;

гидроксид метила

;

древесный спирт

;

карбинол

;

метилгидрат

;

метиловый спирт

;

English:

Colonial Spirit

;

EINECS:212-378-6

;

Hydroxymethane

;

Methanol(IUPAC)(CAS) [Wiki]

;

Methyl hydrate

;

Methyl hydroxide

;

Methylic alcohol

;

Methylol

;

Pyroxylic spirit

;

Wood alcohol

;

Wood naphtha

;

Wood spirit

;

carbinol

;

methyl alcohol

;

$slope(55)H/C<_(A-160,w+)H><_(A-100,d+)H>-O/H

5. Этиленоксид

Брутто-формула:
C2H4O

CAS# 75-21-8

Названия

Русский:

1,2-эпоксиэтан

;

Окись этилена(IUPAC) [Wiki]

;

Этиленоксид

;

оксиран

;

English:

Ethylene oxide(IUPAC) [Wiki]

;

Oxirane(CAS)

;

dimethylene oxide

;

epoxyethane

;

oxacyclopropane

;

C_(x1.4)C_q3O_q3; H_(A-15,d-)#1_(A110,w+)H; H_(A-165,d-)#2_(A70,w+)H;

$L(1.4)C_(A0)C_q3O_q3; H_(x1)#1_p3H;H_(x-1)#2_q3H

6. Триметиленоксид

Брутто-формула:
C3H6O

Названия

Русский:

Оксетан(IUPAC)

;

Триметиленоксид

;

English:

1,3-epoxypropane

;

1,3-propylene oxide

;

Oxetane(IUPAC)

;

oxacyclobutane

;

trimethylene oxide

;

H|C|C|H; H|C|$atomColor1(blue)O; H-#2-#6-H; H-#3-#O

7. Гексаметиленоксид

Брутто-формула:
C6H12O

Названия

Русский:

Гексаметиленоксид

;

Оксепан(IUPAC)

;

English:

Oxepane

;

8. Вода

Брутто-формула:
H2O

CAS# 7732-18-5

Названия

Русский:

Вода [Wiki]

;

Оксид водорода(IUPAC)

;

English:

Dihydrogen oxide

;

Water(CAS) [Wiki]

;

oxidane(IUPAC)

;

9. Углекислый газ

Брутто-формула:
CO2

Названия

Русский:

Оксид углерода(IV)(IUPAC)

;

Углекислый газ

;

двуокись углерода

;

диоксид углерода

;

угольный ангидрид

;

English:

Carbon dioxide

;

Carbon oxide

;

Carbon(IV) oxide

;

Carbonic acid gas

;

Carbonic anhydride

;

Carbonic oxide

;

Dry ice

;

10. Оксид фосфора(V)

Брутто-формула:
O10P4

Названия

Русский:

Оксид фосфора(V)

;

Пентаоксид фосфора

;

пятиокись фосфора

;

фосфорный ангидрид

;

English:

Diphosphorus pentoxide

;

Phosphoric anhydride

;

Phosphoric oxide

;

Phosphoric pentoxide

;

Phosphorus oxide

;

Phosphorus pentaoxide

;

Phosphorus pentoxide

;

$slope(15)$L(1.5)O||P`/O|P:l`/O/O/P:rO«|O`_(A120)O|P<`/O_#l><O_#r>_(A120,N2)O

11. Гидроксид калия

Брутто-формула:
HKO

CAS# 1310-58-3

Названия

Русский:

Гидроксид калия(IUPAC) [Wiki]

;

Кали едкое

;

гидроокись калия

;

калия гидроксид

;

каустический поташ

;

English:

Caustic potash

;

E525

;

Potash lye

;

Potassia

;

Potassium hydrate

;

Potassium hydroxide(IUPAC) [Wiki]

;

12. Гидроксид натрия

Брутто-формула:
HNaO

CAS# 1310-73-2

Названия

Русский:

Гидроксид натрия(IUPAC) [Wiki]

;

гидроокись натрия

;

едкая щелочь

;

едкий натр

;

каустик

;

каустическая сода

;

натрия гидроксид

;

English:

Ascarite

;

Caustic soda

;

E524

;

Lye

;

Sodium hydrate

;

Sodium hydroxide(IUPAC) [Wiki]

;

Sodium oxidanide

;

White caustic

;

13. Гидроксид кальция

Брутто-формула:
H2CaO2

CAS# 1305-62-0

Названия

Русский:

Гидроксид кальция(IUPAC) [Wiki]

;

гашёная известь

;

гидроокись кальция

;

кальция гидроксид

;

English:

Calcium hydroxide(IUPAC) [Wiki]

;

Calcium(II) hydroxide

;

E526

;

Hydrated lime

;

Milk of lime

;

Pickling lime

;

Slaked lime

;

$L(1.5)HO^-Ca^2+/0`HO^-

14. Оксид кальция

Брутто-формула:
CaO

CAS# 1305-78-8

Названия

Русский:

Оксид кальция(IUPAC) [Wiki]

;

кальция оксид

;

окись кальция, негашёная и́звесть

;

English:

Calcia

;

Calciogreen

;

Calcium oxide(IUPAC) [Wiki]

;

Calciumoxide (CaO)

;

EINECS:215-138-9

;

Oxocalcium(IUPAC)

;

Quicklime

;

burnt lime

;

unslaked lime

;

15. Оксид магния

Брутто-формула:
MgO

Названия

Русский:

Жжёная магнезия

;

Оксид магния(IUPAC)

;

магния окись

;

магния оксид

;

периклаз

;

English:

Magnesia

;

Magnesium oxide(IUPAC)

;

Periclase

;

16. Гидроксид магния

Брутто-формула:
H2MgO2

CAS# 1309-42-8

Названия

Русский:

Гидроксид магния(IUPAC)

;

магния гидроксид

;

English:

Magnesium hydroxide(IUPAC)

;

Magnesium hydroxide, (Mg(OH)2)(CAS)

;

Milk of magnesia

;

H/O^-$L(1.4)hMg^++/hO^-$L()H

17. Гидроксид аммония

Брутто-формула:
H5NO

CAS# 1336-21-6

Названия

Русский:

Аммония гидрооксид

;

Гидрат аммиака(IUPAC) [Wiki]

;

Гидроксид аммония

;

аммиачная вода

;

едкий аммиак

;

едкий аммоний

;

English:

Ammonium hydroxide [Wiki]

;

E527

;

EINECS:215-647-6

;

ammonia liquor

;

ammonia water

;

ammonical liquor

;

aqua ammonia

;

aqueous ammonia

;

H/N^+<`|H><_(A80,w+)H>_(A15,d+)H`|0O`^-# -H

18. Оксид бора

Брутто-формула:
B2O3

CAS# 1303-86-2

Названия

Русский:

Борный ангидрид

;

Оксид бора [Wiki]

;

ангидрид борной кислоты

;

English:

Boracicanhydride

;

Boria (B2O3)

;

Boric acid (HBO2), anhydride

;

Boric acid anhydride

;

Boric acidanhydride

;

Boric anhydride

;

Boron trioxide [Wiki]

;

Boron(III) oxide

;

Boronsesquioxide

;

EINECS:215-125-8

;

Fused boricacid

;

boria

;

boric oxide

;

boron oxide

;

boron sesquioxide

;

diboron trioxide

;

oxo(oxoboranyloxy)borane(IUPAC)

;

19. Диоксан

Брутто-формула:
C4H8O2

CAS# 123-91-1

Названия

Русский:

1,4-диоксан(IUPAC)

;

Диоксан

;

диэтилендиоксид

;

English:

1,4-Diethylene dioxide

;

1,4-Diethyleneoxide

;

1,4-Dioxacyclohexane(IUPAC)

;

1,4-Dioxan

;

1,4-Dioxane(IUPAC)

;

Dioxane

;

[1,4]Dioxane

;

[6]-crown-2

;

p-Dioxane

;

$slope(15)O<_(A-120)H><|H>/<`|H><H>_(A60)O_(A-165,W+)<`|H><_(A60,w1)H>_(A165)<|H><`H>_(W-)#1

20. Пероксид водорода

Брутто-формула:
H2O2

CAS# 7722-84-1

Названия

Русский:

Пероксид водорода

;

перекись водорода

;

English:

Albone

;

Dioxidane

;

Hioxyl

;

Hydrogen dioxide

;

Hydrogen peroxide(IUPAC)

;

Inhibine

;

Oxidanyl

;

Peroxaan

;

Superoxol

;

dihydrogen dioxide(IUPAC)

;

hydroperoxide

;

oxydol

;

perhydrol

;

Понравилась статья? Поделить с друзьями:

Не пропустите и эти статьи:

  • Олимпийское золото как пишется
  • Оля ля как пишется на французском
  • Оксид марганца как пишется
  • Олимпийский чемпион как пишется правильно
  • Оля ласково как пишется

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии