Как пишется тангенс угла

  • Определение

  • График тангенса

  • Свойства тангенса

  • Обратная к тангенсу функция

  • Таблица тангенсов

Определение

Тангенс острого угла α (tg α или tan α) – это отношение противолежащего катета (a) к прилежащему (b) в прямоугольном треугольнике.

tg α = a / b

Тангенс острого угла

Например:
a = 3
b = 4
tg α = a / b = 3 / 4 = 0.75

График тангенса

Функция тангенса пишется как y = tg (x). График в общем виде выглядит следующим образом:

График тангенса

Свойства тангенса

Ниже в табличном виде представлены основные свойства тангенса с формулами.

Свойство Формула
Симметричность tg (-α) = -tg α
Симметричность tg (90°- α) = ctg α
Тригонометрические тождества tg α = sin α / cos α
tg α = 1 / ctg α
Тангенс двойного угла tg 2α = 2 tg α / (1 — tg2α)
Тангенс суммы углов tg (α+β) = (tg α + tg β) / (1 — tg α tg β)
Тангенс разности углов tg (α-β) = (tg α — tg β) / (1 + tg α tg β)
Сумма тангенсов tg α + tg β = sin (α + β) / cos α cos β
Разность тангенсов tg α — tg β = sin (αβ) / cos α cos β
Произведение тангенсов tg α tg β = (tg α + tg β) / (ctg α + ctg β)
Тригонометрическая функция: Тангенс угла (tg)
Произведение тангенса и котангенса tg α ctg β = (tg α + ctg β) / (ctg α + tg β)
Тригонометрическая функция: Тангенс угла (tg)
Производная тангенса tg’ x = 1 / cos2 (x)
Интеграл тангенса ∫ tg x dx = -ln |cos x| + C
Формула Эйлера tg x = (eixeix) / i(eix + eix)

microexcel.ru

Обратная к тангенсу функция

Арктангенс x – это обратная функция к тангенсу x, где x – любое число (x∈ℝ).

Если тангенс угла у равняется х (tg y = x), значит арктангенс x равен у:

arctg x = tg-1 x = y

Например:

arctg 1 = tg-1 1 = 45° = π/4 рад

Таблица тангенсов

x (°) x (рад) tg x
-90° -π/2 -∞
-71.565° -1.2490 -3
-63.435° -1.1071 -2
-60° -π/3 -√3
-45° -π/4 -1
-30° -π/6 -1/√3
-26.565° -0.4636 -0.5
0 0
26.565° 0.4636 0.5
30° π/6 1/√3
45° π/4 1
60° π/3 3
63.435° 1.1071 2
71.565° 1.2490 3
90° π/2

microexcel.ru

Что такое тангенс угла и как его найти

Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.

Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.

Тангенс

Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.

Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.

Тангенс угла

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Тангенс — это отношение…

Итак, есть два определения:

  1. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

    Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.

  2. Тангенс – это отношение синуса к косинусу.

    Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.

Приняты обозначения:

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Как найти тангенс угла (формулы)

Первое свойство тангенса вытекает из его определения как отношения катетов.

Треугольник

Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому

Сумма углов

Так как тангенс – это отношение катетов, то

Отношение катетов

Получается, что

Результат вычислений

Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.

В частности,

Углы

Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти его по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Тригонометрическое тождество

Из формулы тангенсов, записывающей кратко второе определение

Формула

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.

Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится его зависимость от косинуса:

Зависимость

Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:

Синус

Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой нужной науки внесли ученые Ближнего Востока и Индии, которые придумали наиболее важные понятия, объяснили многие свойства, предложили варианты измерения и др.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии без таблиц и графиков.

Синус, косинус, тангенс и котангенс. Определения

Зачем разделять понятия синуса, косинуса, тангенса и котангенса?

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Что такое синус?

Синус угла (sin α) — это отношение противолежащего этому углу катета к гипотенузе.

Что такое косинус?

Косинус угла (cosα) — это отношение прилежащего катета к гипотенузе.

Что такое тангенс?

Тангенс угла (tg α) — это отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) — отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Синус и косинус можно представить через экспоненту (экспоненциальная функция).

Приведем иллюстрацию. 

Синус, косинус, тангенс и котангенс. Определения

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Означения синуса, косинуса, тангенса и котангенса позволяют вычислять (находить) значения этих функций по известным длинам сторон треугольника.

Что и почему важно и принято помнить в ходе такого нахождения?

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тг и ктг — вся числовая прямая, то есть эти функции могут принимать любые значения.

Как найти синус? Для начала нужно определиться, какой перед нами треугольник: прямоугольный или произвольный. В первом случае можно использовать обычный тригонометрический метод, а во втором — теорему косинусов.

Как найти косинус? Соответственно, нам нужно знать значения прилежающего катета и гипотенузы. 

Как найти тангенс? Если треугольник прямоугольный, то тангенс вычисляется при помощи значений противоположного катета и прилежащего (в уравнении нужно поделить одно на другое). Если речь идет о числах, тупых, развернутых углов и углов, превышающих 360 градусов, то тангенс определяется при помощи синуса и косинуса (посредством их отношения и деления).

Теорема синусов и косинусов используется для того чтобы искать элементы в произвольном треугольнике. Такой поиск используется часто.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность (круг) с центром в начале декартовой системы координат.

                                                                 Угол поворота

Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1. Определение дается через координаты точки A1(x , y). 

Синус (sin или син) угла поворота

Синус угла поворота α — это ордината точки A1(x , y). sin α=y

Косинус (cos) угла поворота

Косинус угла поворота α — это абсцисса точки A1(x , y). cos α=икс

Тангенс (tg) угла поворота

Тангенс угла поворота α — это отношение ординаты точки A1(x , y) к ее абсциссе. tg α=yx

Котангенс (ctg) угла поворота

Котанг угла поворота α — это отношение абсциссы точки A1(x , y) к ее ординате. ctg α=xy

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0, 1) и (0, -1). В таких случаях выражение для тангенса tg α=yx просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогична ситуация с котангенсом. Отличие состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Простое правило: синус и косинус определены для любых углов α.

Тангенс определен для всех углов, кроме α=90°+180°·k, k∈Z (α=π2+π·k, k∈Z)

Котангенс определен для всех углов, кроме α=180°·k, k∈Z (α=π·k, k∈Z)

При решении практических примеров не говорят «синус угла поворота α». Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь. 

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в радиан.

Например, синус числа 10π равен синусу угла поворота величиной 10π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности — точка A c координатами (1, 0).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t — ордината точки единичной окружности, соответствующей числу t. sin t=y

Косинус (cos) числа t

Косинус числа t — абсцисса точки единичной окружности, соответствующей числу t. cos t=x

Тангенс (tg) числа t

Тангенс числа t — отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. tg t=yx=sin tcos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α — это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс — основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью  соотношений сторон прямоугольного треугольника. Покажем это.

                                                                     Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A(1,0) на угол величиной до 90 градусов и проведем из полученной точки A1(x,y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A1OH равен углу поворота α, длина катета OH равна абсциссе точки A1(x,y). Длина катета, противолежащего углу, равна ординате точки A1(x,y), а длина гипотенузы равна единице, так как она является радиусом единичной окружности. 

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе. 

sin α=A1HOA1=y1=y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α, при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Синус, косинус, тангенс и котангенс: основные формулы

Синус, косинус, тангенс и котангенс: основные формулы​​​​​​​

Катетами прямоугольного треугольника называются те его стороны, которые образуют прямой угол. Каждый из катетов всегда меньше гипотенузы по значению, но в сумме они обязательно ее превосходят. Зная оба катета, можно найти не только третью сторону прямоугольного треугольника – гипотенузу, по теореме Пифагора, но и углы, находящиеся между катетами и гипотенузой. Для этого используется тригонометрическое отношение тангенса угла α, которое по определению равно отношению катета, противолежащего углу α, к катету прилежащему.

Делением катета, находящегося напротив угла, на катет, который является одной из сторон угла, получается значение тангенса, соответствующее определенной градусной мере. Краткая таблица основных значений тангенса находится внизу страницы, а полная таблица всех тангенсов расположена по ссылке.

Стороны и угол tg прямоугольного треугольника

Свойства

Тангенс угла tg(α) — есть отношение противолежащего катета a к прилежащему катету b.

Таблица тангенсов

Тангенс угла градусов   0   0.000
Тангенс угла 30° градусов   1/√3   0.577
Тангенс угла 45° градусов   1   1.000
Тангенс угла 60° градусов   √3   1.732
Тангенс угла 90° градусов   ∞  
Тангенс угла tg(A)

Тангенс угла tg(A) — есть отношение
противолежащего катета a к
прилежащему катету b

[ tg(A) = frac{a}{b} ]

Тангенс угла — tg(A), таблица

0°
Тангенс угла 0 градусов

$ tg(0°) = tg(0) = 0 $
0.000
30°
Тангенс угла 30 градусов

$ tg(30°) = tgBig(Largefrac{pi}{6}normalsizeBig) = Largefrac{1}{sqrt{3}}normalsize $
0.577
45°
Тангенс угла 45 градусов

$ tg(45°) = tgBig(Largefrac{pi}{4}normalsizeBig) = 1 $
1.000
60°
Тангенс угла 60 градусов

$ tg(60°) = tgBig(Largefrac{pi}{3}normalsizeBig) = sqrt{3} $
1.732
90°
Тангенс угла 90 градусов

$ tg(90°) = tgBig(Largefrac{pi}{2}normalsizeBig) = infin $

Вычислить, найти тангенс угла tg(A) и угол, в прямоугольном треугольнике

Вычислить, найти тангенс угла tg(A) по углу A в градусах

Вычислить, найти тангенс угла tg(A) по углу A в радианах

Тангенс угла — tg(A)

стр. 224

Определение

Тангенс острого угла α (tg α или tan α) – это отношение противолежащего катета (a) к прилежащему (b) в прямоугольном треугольнике.

tg α = a / b

Тангенс острого угла

Например:
a = 3
b = 4
tg α = a / b = 3 / 4 = 0.75

График тангенса

Функция тангенса пишется как y = tg (x). График в общем виде выглядит следующим образом:

График тангенса

Свойства тангенса

Ниже в табличном виде представлены основные свойства тангенса с формулами.

Обратная к тангенсу функция

Арктангенс x – это обратная функция к тангенсу x, где x – любое число (x∈ℝ).

Если тангенс угла у равняется х (tg y = x), значит арктангенс x равен у:

arctg x = tg-1 x = y

Например:

arctg 1 = tg-1 1 = 45° = π/4 рад

Таблица тангенсов

x (°) x (рад) tg x
-90° -π/2 -∞
-71.565° -1.2490 -3
-63.435° -1.1071 -2
-60° -π/3 -√3
-45° -π/4 -1
-30° -π/6 -1/√3
-26.565° -0.4636 -0.5
0 0
26.565° 0.4636 0.5
30° π/6 1/√3
45° π/4 1
60° π/3 3
63.435° 1.1071 2
71.565° 1.2490 3
90° π/2

microexcel.ru

Угол

Современные определения тригонометрических функций и их символика принадлежат Л. Эйлеру. Хотя еще в 3-м в. до н. э в трудах Архимеда, Евклида и других рассматриваются отношения сторон в прямоугольном треугольнике, что фактически и является тригонометрическими функциями. В переводе с греческого тригонометрия означает «треугольник» и «измеряю» и является разделом математики, изучающим связь между сторонами и углами треугольника. Как нам известно, в прямоугольном треугольнике 2 угла острых, а один является прямым. Стороны треугольника, прилежащие к углу, равному 90 градусов, называются катетами, с сторона напротив прямого угла является гипотенузой. Тангенс представляет собой одну из тригонометрических функций угла. Функцию тангенс для острых углов можно рассматривать как отношение двух катетов: противолежащего к прилежащему.

tg (a)=а/в

где а — катет, противолежащий углу а;
в — прилежащий катет.

Тангенс заданного угла можно определить, воспользовавшись таблицей Брадиса, где помещены тригонометрические функции всех углов. Если в задаче известна величина угла и одна из сторон треугольника, будет несложно определить остальные его стороны и углы. С помощью онлайн калькулятора ваши расчеты будут более быстрыми и правильными.

Рассчитать тангенс угла

tg (°) = 

Таблица тангенсов углов от 0° до 180°

tg (1°) 0.0175
tg (2°) 0.0349
tg (3°) 0.0524
tg (4°) 0.0699
tg (5°) 0.0875
tg (6°) 0.1051
tg (7°) 0.1228
tg (8°) 0.1405
tg (9°) 0.1584
tg (10°) 0.1763
tg (11°) 0.1944
tg (12°) 0.2126
tg (13°) 0.2309
tg (14°) 0.2493
tg (15°) 0.2679
tg (16°) 0.2867
tg (17°) 0.3057
tg (18°) 0.3249
tg (19°) 0.3443
tg (20°) 0.364
tg (21°) 0.3839
tg (22°) 0.404
tg (23°) 0.4245
tg (24°) 0.4452
tg (25°) 0.4663
tg (26°) 0.4877
tg (27°) 0.5095
tg (28°) 0.5317
tg (29°) 0.5543
tg (30°) 0.5774
tg (31°) 0.6009
tg (32°) 0.6249
tg (33°) 0.6494
tg (34°) 0.6745
tg (35°) 0.7002
tg (36°) 0.7265
tg (37°) 0.7536
tg (38°) 0.7813
tg (39°) 0.8098
tg (40°) 0.8391
tg (41°) 0.8693
tg (42°) 0.9004
tg (43°) 0.9325
tg (44°) 0.9657
tg (45°) 1
tg (46°) 1.0355
tg (47°) 1.0724
tg (48°) 1.1106
tg (49°) 1.1504
tg (50°) 1.1918
tg (51°) 1.2349
tg (52°) 1.2799
tg (53°) 1.327
tg (54°) 1.3764
tg (55°) 1.4281
tg (56°) 1.4826
tg (57°) 1.5399
tg (58°) 1.6003
tg (59°) 1.6643
tg (60°) 1.7321
tg (61°) 1.804
tg (62°) 1.8807
tg (63°) 1.9626
tg (64°) 2.0503
tg (65°) 2.1445
tg (66°) 2.246
tg (67°) 2.3559
tg (68°) 2.4751
tg (69°) 2.6051
tg (70°) 2.7475
tg (71°) 2.9042
tg (72°) 3.0777
tg (73°) 3.2709
tg (74°) 3.4874
tg (75°) 3.7321
tg (76°) 4.0108
tg (77°) 4.3315
tg (78°) 4.7046
tg (79°) 5.1446
tg (80°) 5.6713
tg (81°) 6.3138
tg (82°) 7.1154
tg (83°) 8.1443
tg (84°) 9.5144
tg (85°) 11.4301
tg (86°) 14.3007
tg (87°) 19.0811
tg (88°) 28.6363
tg (89°) 57.29
tg (90°)
tg (91°) -57.29
tg (92°) -28.6363
tg (93°) -19.0811
tg (94°) -14.3007
tg (95°) -11.4301
tg (96°) -9.5144
tg (97°) -8.1443
tg (98°) -7.1154
tg (99°) -6.3138
tg (100°) -5.6713
tg (101°) -5.1446
tg (102°) -4.7046
tg (103°) -4.3315
tg (104°) -4.0108
tg (105°) -3.7321
tg (106°) -3.4874
tg (107°) -3.2709
tg (108°) -3.0777
tg (109°) -2.9042
tg (110°) -2.7475
tg (111°) -2.6051
tg (112°) -2.4751
tg (113°) -2.3559
tg (114°) -2.246
tg (115°) -2.1445
tg (116°) -2.0503
tg (117°) -1.9626
tg (118°) -1.8807
tg (119°) -1.804
tg (120°) -1.7321
tg (121°) -1.6643
tg (122°) -1.6003
tg (123°) -1.5399
tg (124°) -1.4826
tg (125°) -1.4281
tg (126°) -1.3764
tg (127°) -1.327
tg (128°) -1.2799
tg (129°) -1.2349
tg (130°) -1.1918
tg (131°) -1.1504
tg (132°) -1.1106
tg (133°) -1.0724
tg (134°) -1.0355
tg (135°) -1
tg (136°) -0.9657
tg (137°) -0.9325
tg (138°) -0.9004
tg (139°) -0.8693
tg (140°) -0.8391
tg (141°) -0.8098
tg (142°) -0.7813
tg (143°) -0.7536
tg (144°) -0.7265
tg (145°) -0.7002
tg (146°) -0.6745
tg (147°) -0.6494
tg (148°) -0.6249
tg (149°) -0.6009
tg (150°) -0.5774
tg (151°) -0.5543
tg (152°) -0.5317
tg (153°) -0.5095
tg (154°) -0.4877
tg (155°) -0.4663
tg (156°) -0.4452
tg (157°) -0.4245
tg (158°) -0.404
tg (159°) -0.3839
tg (160°) -0.364
tg (161°) -0.3443
tg (162°) -0.3249
tg (163°) -0.3057
tg (164°) -0.2867
tg (165°) -0.2679
tg (166°) -0.2493
tg (167°) -0.2309
tg (168°) -0.2126
tg (169°) -0.1944
tg (170°) -0.1763
tg (171°) -0.1584
tg (172°) -0.1405
tg (173°) -0.1228
tg (174°) -0.1051
tg (175°) -0.0875
tg (176°) -0.0699
tg (177°) -0.0524
tg (178°) -0.0349
tg (179°) -0.0175
tg (180°) -0

Таблица тангенсов углов от 180° до 360°

tg (181°) 0.0175
tg (182°) 0.0349
tg (183°) 0.0524
tg (184°) 0.0699
tg (185°) 0.0875
tg (186°) 0.1051
tg (187°) 0.1228
tg (188°) 0.1405
tg (189°) 0.1584
tg (190°) 0.1763
tg (191°) 0.1944
tg (192°) 0.2126
tg (193°) 0.2309
tg (194°) 0.2493
tg (195°) 0.2679
tg (196°) 0.2867
tg (197°) 0.3057
tg (198°) 0.3249
tg (199°) 0.3443
tg (200°) 0.364
tg (201°) 0.3839
tg (202°) 0.404
tg (203°) 0.4245
tg (204°) 0.4452
tg (205°) 0.4663
tg (206°) 0.4877
tg (207°) 0.5095
tg (208°) 0.5317
tg (209°) 0.5543
tg (210°) 0.5774
tg (211°) 0.6009
tg (212°) 0.6249
tg (213°) 0.6494
tg (214°) 0.6745
tg (215°) 0.7002
tg (216°) 0.7265
tg (217°) 0.7536
tg (218°) 0.7813
tg (219°) 0.8098
tg (220°) 0.8391
tg (221°) 0.8693
tg (222°) 0.9004
tg (223°) 0.9325
tg (224°) 0.9657
tg (225°) 1
tg (226°) 1.0355
tg (227°) 1.0724
tg (228°) 1.1106
tg (229°) 1.1504
tg (230°) 1.1918
tg (231°) 1.2349
tg (232°) 1.2799
tg (233°) 1.327
tg (234°) 1.3764
tg (235°) 1.4281
tg (236°) 1.4826
tg (237°) 1.5399
tg (238°) 1.6003
tg (239°) 1.6643
tg (240°) 1.7321
tg (241°) 1.804
tg (242°) 1.8807
tg (243°) 1.9626
tg (244°) 2.0503
tg (245°) 2.1445
tg (246°) 2.246
tg (247°) 2.3559
tg (248°) 2.4751
tg (249°) 2.6051
tg (250°) 2.7475
tg (251°) 2.9042
tg (252°) 3.0777
tg (253°) 3.2709
tg (254°) 3.4874
tg (255°) 3.7321
tg (256°) 4.0108
tg (257°) 4.3315
tg (258°) 4.7046
tg (259°) 5.1446
tg (260°) 5.6713
tg (261°) 6.3138
tg (262°) 7.1154
tg (263°) 8.1443
tg (264°) 9.5144
tg (265°) 11.4301
tg (266°) 14.3007
tg (267°) 19.0811
tg (268°) 28.6363
tg (269°) 57.29
tg (270°) — ∞
tg (271°) -57.29
tg (272°) -28.6363
tg (273°) -19.0811
tg (274°) -14.3007
tg (275°) -11.4301
tg (276°) -9.5144
tg (277°) -8.1443
tg (278°) -7.1154
tg (279°) -6.3138
tg (280°) -5.6713
tg (281°) -5.1446
tg (282°) -4.7046
tg (283°) -4.3315
tg (284°) -4.0108
tg (285°) -3.7321
tg (286°) -3.4874
tg (287°) -3.2709
tg (288°) -3.0777
tg (289°) -2.9042
tg (290°) -2.7475
tg (291°) -2.6051
tg (292°) -2.4751
tg (293°) -2.3559
tg (294°) -2.246
tg (295°) -2.1445
tg (296°) -2.0503
tg (297°) -1.9626
tg (298°) -1.8807
tg (299°) -1.804
tg (300°) -1.7321
td width=»80″>tg (301°)

-1.6643
tg (302°) -1.6003
tg (303°) -1.5399
tg (304°) -1.4826
tg (305°) -1.4281
tg (306°) -1.3764
tg (307°) -1.327
tg (308°) -1.2799
tg (309°) -1.2349
tg (310°) -1.1918
tg (311°) -1.1504
tg (312°) -1.1106
tg (313°) -1.0724
tg (314°) -1.0355
tg (315°) -1
tg (316°) -0.9657
tg (317°) -0.9325
tg (318°) -0.9004
tg (319°) -0.8693
tg (320°) -0.8391
tg (321°) -0.8098
tg (322°) -0.7813
tg (323°) -0.7536
tg (324°) -0.7265
tg (325°) -0.7002
tg (326°) -0.6745
tg (327°) -0.6494
tg (328°) -0.6249
tg (329°) -0.6009
tg (330°) -0.5774
tg (331°) -0.5543
tg (332°) -0.5317
tg (333°) -0.5095
tg (334°) -0.4877
tg (335°) -0.4663
tg (336°) -0.4452
tg (337°) -0.4245
tg (338°) -0.404
tg (339°) -0.3839
tg (340°) -0.364
tg (341°) -0.3443
tg (342°) -0.3249
tg (343°) -0.3057
tg (344°) -0.2867
tg (345°) -0.2679
tg (346°) -0.2493
tg (347°) -0.2309
tg (348°) -0.2126
tg (349°) -0.1944
tg (350°) -0.1763
tg (351°) -0.1584
tg (352°) -0.1405
tg (353°) -0.1228
tg (354°) -0.1051
tg (355°) -0.0875
tg (356°) -0.0699
tg (357°) -0.0524
tg (358°) -0.0349
tg (359°) -0.0175
tg (360°) -0

Содержание:

  • Тангенс угла в треугольнике
  • Тангенс произвольного угла

Тангенс угла в треугольнике

Определение

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего
этому углу катета к прилежащему катету (рис. 1):

$$operatorname{tg} alpha=frac{a}{b}$$

Как пишется тангенс угла альфа

Замечание

Сравнивая определения для тангенса и
котангенса угла, можно заметить, что тангенс и котангенс угла связаны между собой соотношением:

$$
operatorname{tg} alpha=frac{1}{operatorname{ctg} alpha}
$$

Пример

Задание. Найти тангенс острого угла прямоугольного треугольника, если известно, что
прилежащий к этому углу катет равен 3 см, а противолежащий ему — на 2 сантиметра длиннее.

Решение. Вначале найдем длину противолежащего катета:

$a = 3 + 2 = 5$ (см)

Тогда тангенс угла

$$
operatorname{tg} alpha=frac{5}{3}
$$

Ответ.
$$
operatorname{tg} alpha=frac{5}{3}
$$

Тангенс произвольного угла

Определение

Тангенс произвольного угла
$alpha$, образованного осью
$O_x$ и произвольным радиус-вектором $overrightarrow{O A}=left(a_{x} ; a_{y}right)$ (рис. 2), — отношение
проекции этого вектора на ось
$O_y$ к его проекции на ось
$O_x$:

$$operatorname{tg} alpha=frac{a_{y}}{a_{x}}$$

Как пишется тангенс угла альфа

Пример

Задание. Найти тангенс угла, образованного вектором
$bar{a}=(1 ;-1)$ и осью абсцисс.

Решение. Проекция на ось абсцисс равна
$a_x=1$, а на ось ординат — $a_y=-1$, тогда

$$operatorname{tg} alpha=frac{-1}{1}=-1$$

Ответ. $operatorname{tg} alpha=-1$

Читать дальше: что такое котангенс угла.

Тангенс угла tg(A)

Тангенс угла tg(A) — есть отношение
противолежащего катета a к
прилежащему катету b

[ tg(A) = frac{a}{b} ]

Тангенс угла — tg(A), таблица

0°
Тангенс угла 0 градусов

$ tg(0°) = tg(0) = 0 $
0.000
30°
Тангенс угла 30 градусов

$ tg(30°) = tgBig(Largefrac{pi}{6}normalsizeBig) = Largefrac{1}{sqrt{3}}normalsize $
0.577
45°
Тангенс угла 45 градусов

$ tg(45°) = tgBig(Largefrac{pi}{4}normalsizeBig) = 1 $
1.000
60°
Тангенс угла 60 градусов

$ tg(60°) = tgBig(Largefrac{pi}{3}normalsizeBig) = sqrt{3} $
1.732
90°
Тангенс угла 90 градусов

$ tg(90°) = tgBig(Largefrac{pi}{2}normalsizeBig) = infin $

Вычислить, найти тангенс угла tg(A) и угол, в прямоугольном треугольнике

Вычислить, найти тангенс угла tg(A) по углу A в градусах

Вычислить, найти тангенс угла tg(A) по углу A в радианах

Тангенс угла — tg(A)

стр. 224

Тангенс угла. Таблица тангенсов.

Тангенс угла через градусы, минуты и секунды

Тангенс угла через десятичную запись угла

Определение тангенса

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

tg(α) = sin(α)/cos(α)

tg(α) = 1/ctg(α)

Таблица тангенсов в радианах

tg(0°) = 0tg(π/12) = tg(15°) = 0.2679491924tg(π/6) = tg(30°) = 0.5773502692tg(π/4) = tg(45°) = 1tg(π/3) = tg(60°) = 1.732050808tg(5π/12) = tg(75°) = 3.732050808tg(π/2) = tg(90°) = ∞tg(7π/12) = tg(105°) = -3.732050808tg(2π/3) = tg(120°) = -1.732050808tg(3π/4) = tg(135°) = -1tg(5π/6) = tg(150°) = -0.5773502692tg(11π/12) = tg(165°) = -0.2679491924tg(π) = tg(180°) = 0tg(13π/12) = tg(195°) = 0.2679491924tg(7π/6) = tg(210°) = 0.5773502692tg(5π/4) = tg(225°) = 1tg(4π/3) = tg(240°) = 1.732050808tg(17π/12) = tg(255°) = 3.732050808tg(3π/2) = tg(270°) = ∞tg(19π/12) = tg(285°) = -3.732050808tg(5π/3) = tg(300°) = -1.732050808tg(7π/4) = tg(315°) = -1tg(11π/6) = tg(330°) = -0.5773502692tg(23π/12) = tg(345°) = -0.2679491924

Таблица Брадиса тангенсы

tg(0) = 0 tg(120) = -1.732050808 tg(240) = 1.732050808
tg(1) = 0.01745506493 tg(121) = -1.664279482 tg(241) = 1.804047755
tg(2) = 0.03492076949 tg(122) = -1.600334529 tg(242) = 1.880726465
tg(3) = 0.05240777928 tg(123) = -1.539864964 tg(243) = 1.962610506
tg(4) = 0.06992681194 tg(124) = -1.482560969 tg(244) = 2.050303842
tg(5) = 0.08748866353 tg(125) = -1.428148007 tg(245) = 2.144506921
tg(6) = 0.1051042353 tg(126) = -1.37638192 tg(246) = 2.246036774
tg(7) = 0.1227845609 tg(127) = -1.327044822 tg(247) = 2.355852366
tg(8) = 0.1405408347 tg(128) = -1.279941632 tg(248) = 2.475086853
tg(9) = 0.1583844403 tg(129) = -1.234897157 tg(249) = 2.605089065
tg(10) = 0.1763269807 tg(130) = -1.191753593 tg(250) = 2.747477419
tg(11) = 0.1943803091 tg(131) = -1.150368407 tg(251) = 2.904210878
tg(12) = 0.2125565617 tg(132) = -1.110612515 tg(252) = 3.077683537
tg(13) = 0.2308681911 tg(133) = -1.07236871 tg(253) = 3.270852618
tg(14) = 0.2493280028 tg(134) = -1.035530314 tg(254) = 3.487414444
tg(15) = 0.2679491924 tg(135) = -1 tg(255) = 3.732050808
tg(16) = 0.2867453858 tg(136) = -0.9656887748 tg(256) = 4.010780934
tg(17) = 0.3057306815 tg(137) = -0.9325150861 tg(257) = 4.331475874
tg(18) = 0.3249196962 tg(138) = -0.9004040443 tg(258) = 4.704630109
tg(19) = 0.3443276133 tg(139) = -0.8692867378 tg(259) = 5.144554016
tg(20) = 0.3639702343 tg(140) = -0.8390996312 tg(260) = 5.67128182
tg(21) = 0.383864035 tg(141) = -0.8097840332 tg(261) = 6.313751515
tg(22) = 0.4040262258 tg(142) = -0.7812856265 tg(262) = 7.115369722
tg(23) = 0.4244748162 tg(143) = -0.7535540501 tg(263) = 8.144346428
tg(24) = 0.4452286853 tg(144) = -0.726542528 tg(264) = 9.514364454
tg(25) = 0.4663076582 tg(145) = -0.7002075382 tg(265) = 11.4300523
tg(26) = 0.4877325886 tg(146) = -0.6745085168 tg(266) = 14.30066626
tg(27) = 0.5095254495 tg(147) = -0.6494075932 tg(267) = 19.08113669
tg(28) = 0.5317094317 tg(148) = -0.6248693519 tg(268) = 28.63625328
tg(29) = 0.5543090515 tg(149) = -0.600860619 tg(269) = 57.28996163
tg(30) = 0.5773502692 tg(150) = -0.5773502692 tg(270) = ∞
tg(31) = 0.600860619 tg(151) = -0.5543090515 tg(271) = -57.28996163
tg(32) = 0.6248693519 tg(152) = -0.5317094317 tg(272) = -28.63625328
tg(33) = 0.6494075932 tg(153) = -0.5095254495 tg(273) = -19.08113669
tg(34) = 0.6745085168 tg(154) = -0.4877325886 tg(274) = -14.30066626
tg(35) = 0.7002075382 tg(155) = -0.4663076582 tg(275) = -11.4300523
tg(36) = 0.726542528 tg(156) = -0.4452286853 tg(276) = -9.514364454
tg(37) = 0.7535540501 tg(157) = -0.4244748162 tg(277) = -8.144346428
tg(38) = 0.7812856265 tg(158) = -0.4040262258 tg(278) = -7.115369722
tg(39) = 0.8097840332 tg(159) = -0.383864035 tg(279) = -6.313751515
tg(40) = 0.8390996312 tg(160) = -0.3639702343 tg(280) = -5.67128182
tg(41) = 0.8692867378 tg(161) = -0.3443276133 tg(281) = -5.144554016
tg(42) = 0.9004040443 tg(162) = -0.3249196962 tg(282) = -4.704630109
tg(43) = 0.9325150861 tg(163) = -0.3057306815 tg(283) = -4.331475874
tg(44) = 0.9656887748 tg(164) = -0.2867453858 tg(284) = -4.010780934
tg(45) = 1 tg(165) = -0.2679491924 tg(285) = -3.732050808
tg(46) = 1.035530314 tg(166) = -0.2493280028 tg(286) = -3.487414444
tg(47) = 1.07236871 tg(167) = -0.2308681911 tg(287) = -3.270852618
tg(48) = 1.110612515 tg(168) = -0.2125565617 tg(288) = -3.077683537
tg(49) = 1.150368407 tg(169) = -0.1943803091 tg(289) = -2.904210878
tg(50) = 1.191753593 tg(170) = -0.1763269807 tg(290) = -2.747477419
tg(51) = 1.234897157 tg(171) = -0.1583844403 tg(291) = -2.605089065
tg(52) = 1.279941632 tg(172) = -0.1405408347 tg(292) = -2.475086853
tg(53) = 1.327044822 tg(173) = -0.1227845609 tg(293) = -2.355852366
tg(54) = 1.37638192 tg(174) = -0.1051042353 tg(294) = -2.246036774
tg(55) = 1.428148007 tg(175) = -0.08748866353 tg(295) = -2.144506921
tg(56) = 1.482560969 tg(176) = -0.06992681194 tg(296) = -2.050303842
tg(57) = 1.539864964 tg(177) = -0.05240777928 tg(297) = -1.962610506
tg(58) = 1.600334529 tg(178) = -0.03492076949 tg(298) = -1.880726465
tg(59) = 1.664279482 tg(179) = -0.01745506493 tg(299) = -1.804047755
tg(60) = 1.732050808 tg(180) = 0 tg(300) = -1.732050808
tg(61) = 1.804047755 tg(181) = 0.01745506493 tg(301) = -1.664279482
tg(62) = 1.880726465 tg(182) = 0.03492076949 tg(302) = -1.600334529
tg(63) = 1.962610506 tg(183) = 0.05240777928 tg(303) = -1.539864964
tg(64) = 2.050303842 tg(184) = 0.06992681194 tg(304) = -1.482560969
tg(65) = 2.144506921 tg(185) = 0.08748866353 tg(305) = -1.428148007
tg(66) = 2.246036774 tg(186) = 0.1051042353 tg(306) = -1.37638192
tg(67) = 2.355852366 tg(187) = 0.1227845609 tg(307) = -1.327044822
tg(68) = 2.475086853 tg(188) = 0.1405408347 tg(308) = -1.279941632
tg(69) = 2.605089065 tg(189) = 0.1583844403 tg(309) = -1.234897157
tg(70) = 2.747477419 tg(190) = 0.1763269807 tg(310) = -1.191753593
tg(71) = 2.904210878 tg(191) = 0.1943803091 tg(311) = -1.150368407
tg(72) = 3.077683537 tg(192) = 0.2125565617 tg(312) = -1.110612515
tg(73) = 3.270852618 tg(193) = 0.2308681911 tg(313) = -1.07236871
tg(74) = 3.487414444 tg(194) = 0.2493280028 tg(314) = -1.035530314
tg(75) = 3.732050808 tg(195) = 0.2679491924 tg(315) = -1
tg(76) = 4.010780934 tg(196) = 0.2867453858 tg(316) = -0.9656887748
tg(77) = 4.331475874 tg(197) = 0.3057306815 tg(317) = -0.9325150861
tg(78) = 4.704630109 tg(198) = 0.3249196962 tg(318) = -0.9004040443
tg(79) = 5.144554016 tg(199) = 0.3443276133 tg(319) = -0.8692867378
tg(80) = 5.67128182 tg(200) = 0.3639702343 tg(320) = -0.8390996312
tg(81) = 6.313751515 tg(201) = 0.383864035 tg(321) = -0.8097840332
tg(82) = 7.115369722 tg(202) = 0.4040262258 tg(322) = -0.7812856265
tg(83) = 8.144346428 tg(203) = 0.4244748162 tg(323) = -0.7535540501
tg(84) = 9.514364454 tg(204) = 0.4452286853 tg(324) = -0.726542528
tg(85) = 11.4300523 tg(205) = 0.4663076582 tg(325) = -0.7002075382
tg(86) = 14.30066626 tg(206) = 0.4877325886 tg(326) = -0.6745085168
tg(87) = 19.08113669 tg(207) = 0.5095254495 tg(327) = -0.6494075932
tg(88) = 28.63625328 tg(208) = 0.5317094317 tg(328) = -0.6248693519
tg(89) = 57.28996163 tg(209) = 0.5543090515 tg(329) = -0.600860619
tg(90) = ∞ tg(210) = 0.5773502692 tg(330) = -0.5773502692
tg(91) = -57.28996163 tg(211) = 0.600860619 tg(331) = -0.5543090515
tg(92) = -28.63625328 tg(212) = 0.6248693519 tg(332) = -0.5317094317
tg(93) = -19.08113669 tg(213) = 0.6494075932 tg(333) = -0.5095254495
tg(94) = -14.30066626 tg(214) = 0.6745085168 tg(334) = -0.4877325886
tg(95) = -11.4300523 tg(215) = 0.7002075382 tg(335) = -0.4663076582
tg(96) = -9.514364454 tg(216) = 0.726542528 tg(336) = -0.4452286853
tg(97) = -8.144346428 tg(217) = 0.7535540501 tg(337) = -0.4244748162
tg(98) = -7.115369722 tg(218) = 0.7812856265 tg(338) = -0.4040262258
tg(99) = -6.313751515 tg(219) = 0.8097840332 tg(339) = -0.383864035
tg(100) = -5.67128182 tg(220) = 0.8390996312 tg(340) = -0.3639702343
tg(101) = -5.144554016 tg(221) = 0.8692867378 tg(341) = -0.3443276133
tg(102) = -4.704630109 tg(222) = 0.9004040443 tg(342) = -0.3249196962
tg(103) = -4.331475874 tg(223) = 0.9325150861 tg(343) = -0.3057306815
tg(104) = -4.010780934 tg(224) = 0.9656887748 tg(344) = -0.2867453858
tg(105) = -3.732050808 tg(225) = 1 tg(345) = -0.2679491924
tg(106) = -3.487414444 tg(226) = 1.035530314 tg(346) = -0.2493280028
tg(107) = -3.270852618 tg(227) = 1.07236871 tg(347) = -0.2308681911
tg(108) = -3.077683537 tg(228) = 1.110612515 tg(348) = -0.2125565617
tg(109) = -2.904210878 tg(229) = 1.150368407 tg(349) = -0.1943803091
tg(110) = -2.747477419 tg(230) = 1.191753593 tg(350) = -0.1763269807
tg(111) = -2.605089065 tg(231) = 1.234897157 tg(351) = -0.1583844403
tg(112) = -2.475086853 tg(232) = 1.279941632 tg(352) = -0.1405408347
tg(113) = -2.355852366 tg(233) = 1.327044822 tg(353) = -0.1227845609
tg(114) = -2.246036774 tg(234) = 1.37638192 tg(354) = -0.1051042353
tg(115) = -2.144506921 tg(235) = 1.428148007 tg(355) = -0.08748866353
tg(116) = -2.050303842 tg(236) = 1.482560969 tg(356) = -0.06992681194
tg(117) = -1.962610506 tg(237) = 1.539864964 tg(357) = -0.05240777928
tg(118) = -1.880726465 tg(238) = 1.600334529 tg(358) = -0.03492076949
tg(119) = -1.804047755 tg(239) = 1.664279482 tg(359) = -0.01745506493

Похожие калькуляторы

Определение тангенса угла

Тангенсом угла в прямоугольном треугольнике называют отношение противолежащего катета к прилежащему.

Катетами являются стороны, которые образуют прямой угол в треугольнике, соответственно, гипотенузой является третья (самая длинная) сторона.

Для простоты запоминания можно дать такое определение: тангенс угла — это отношение дальнего от рассматриваемого угла катета к ближнему катету.

1.png

В случае с рисунком, описанным выше: tg⁡α=abtgalpha=frac{a}{b}

Тангенс можно найти напрямую пользуясь данной формулой, а можно и через тригонометрические тождества. Разберем подробнее задачи.

Задача 1

В прямоугольном треугольнике катеты равны 6 см6text{ см} и 8 см8text{ см}. Найдите тангенс угла, близлежащего к меньшей стороне.

Решение

a=8a=8
b=6b=6

tg⁡α=ab=86≈1.33tgalpha=frac{a}{b}=frac{8}{6}approx1.33

Ответ

1.331.33

Формулу:

tg⁡α=abtgalpha=frac{a}{b}

Можно записать в следующем виде:

tg⁡α=sin⁡αcos⁡αtgalpha=frac{sinalpha}{cosalpha}

Проверим истинность данного выражения. Подставим вместо синуса и косинуса их определения:

tg⁡α=sin⁡αcos⁡α=acbc=abtgalpha=frac{sinalpha}{cosalpha}=frac{frac{a}{c}}{frac{b}{c}}=frac{a}{b}

Получили первичное равенство, значит выражение для тангенса через отношение синуса к косинусу верно.

Решим задачу, пользуясь этой формулой.

Задача 2

По условию задачи известен косинус угла, равный 32frac{sqrt{3}}{2} и синус того же угла, равный 12frac{1}{2}. Найдите тангенс данного угла.

Решение

cos⁡α=32cosalpha=frac{sqrt{3}}{2}

sin⁡α=12sinalpha=frac{1}{2}

tg⁡α=sin⁡αcos⁡α=1232=13tgalpha=frac{sinalpha}{cosalpha}=frac{frac{1}{2}}{frac{sqrt{3}}{2}}=frac{1}{sqrt{3}}

Ответ

13frac{1}{sqrt{3}}

Еще одно тождество помогает решить задачи, связанные с тангенсом:

1+tg⁡2α=1cos⁡2α1+tg^2alpha=frac{1}{cos^2alpha}

Оно появляется путем деление каждого слагаемого основного тождества тригонометрии на квадрат косинуса.

Задача 3

Известен квадрат косинуса угла в прямоугольном треугольнике, равный 0.80.8. Нужно найти тангенс этого угла.

Решение

cos⁡2α=0.8cos^2alpha=0.8

1+tg⁡2α=1cos⁡2α1+tg^2alpha=frac{1}{cos^2alpha}

1+tg⁡2α=10.81+tg^2alpha=frac{1}{0.8}

1+tg⁡2α=1.251+tg^2alpha=1.25

tg⁡2α=0.25tg^2alpha=0.25

tg⁡α=0.25tgalpha=sqrt{0.25}

tg⁡α=0.5tgalpha=0.5

Ответ

0.50.5

У вас есть трудности с вычислением тангенса? Можете заказать задачу по математике у наших экспертов!

Тест по теме “Вычисление тангенса”

Понравилась статья? Поделить с друзьями:

Не пропустите и эти статьи:

  • Как пишется тангенс на паскале
  • Как пишется тайкун на английском
  • Как пишется тампоны оби
  • Как пишется тайваньский или тайваньский
  • Как пишется таможенный досмотр

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии