Как пишется тачскрин на английском

Бесплатный переводчик онлайн с английского на русский

Хотите общаться в чатах с собеседниками со всего мира, понимать, о чем поет Билли Айлиш, читать английские сайты на русском? PROMT.One мгновенно переведет ваш текст с английского на русский и еще на 20+ языков.

Точный перевод с транскрипцией

С помощью PROMT.One наслаждайтесь точным переводом с английского на русский, а для слов и фраз смотрите английскую транскрипцию, произношение и варианты переводов с примерами употребления в разных контекстах. Бесплатный онлайн-переводчик PROMT.One — достойная альтернатива Google Translate и другим сервисам, предоставляющим перевод с английского на русский и с русского на английский.

Нужно больше языков?

PROMT.One бесплатно переводит онлайн с английского на азербайджанский, арабский, греческий, иврит, испанский, итальянский, казахский, китайский, корейский, немецкий, португальский, татарский, турецкий, туркменский, узбекский, украинский, финский, французский, эстонский и японский.

  • 1
    touchscreen

    сенсорный экран || с сенсорным экраном

    English-Russian dictionary of mechanical engineering and automation > touchscreen

  • 2
    touchscreen

    «A touchscreen provides the simplest, most direct user interface with a computer» (Charles Н. Small). — Сенсорный экран — простейший и самый прямой пользовательский интерфейс с компьютером

    Ant:

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > touchscreen

  • 3
    touchscreen

    1. сенсорный дисплей

    Англо-русский словарь нормативно-технической терминологии > touchscreen

  • 4
    touchscreen

    Большой англо-русский и русско-английский словарь > touchscreen

  • 5
    touchscreen

    Англо-русский словарь технических терминов > touchscreen

  • 6
    touchscreen

    Универсальный англо-русский словарь > touchscreen

  • 7
    touchscreen

    Англо-русский словарь по полиграфии и издательскому делу > touchscreen

  • 8
    touchscreen

    Англо-русский словарь по авиации > touchscreen

  • 9
    touchscreen

    English-Russian dictionary of telecommunications and their abbreviations > touchscreen

  • 10
    touchscreen

    English-Russian dictionary of terms that are used in computer games > touchscreen

  • 11
    touchscreen

    English-Russian big polytechnic dictionary > touchscreen

  • 12
    Touchscreen

    [`tʌʧ¸skri:n]

    элн сенсорный [сэ] экран.

    ▫ Экран, совмещённый с сенсорными устройствами и позволяющий вводить в компьютер информацию прикосновением пальца руки. С.э. применяются для сенсорных киосков ( информационных киосков), терминалов самообслуживания ( платёжных терминалов), интернет-киосков и пр.

    English-Russian dictionary with terms in the field of electronics > Touchscreen

  • 13
    touchscreen

    English-Russian dictionary on nuclear energy > touchscreen

  • 14
    touchscreen monitor

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > touchscreen monitor

  • 15
    touchscreen capability

    Авиасловарь > touchscreen capability

  • 16
    flat-panel touchscreen

    Универсальный англо-русский словарь > flat-panel touchscreen

  • 17
    flat-panel touchscreen

    English-Russian dictionary of mechanical engineering and automation > flat-panel touchscreen

  • 18
    touch screen

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > touch screen

  • 19
    touch-screen monitor

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > touch-screen monitor

  • 20
    сенсорный экран

    Англо-русский словарь технических терминов > сенсорный экран

См. также в других словарях:

  • Touchscreen — A boy is solving a computerized puzzle using a touchscreen. A touchscreen is an electronic visual display that can detect the presence and location of a touch within the display area. The term generally refers to touching the display of the… …   Wikipedia

  • Touchscreen — Ein Touchscreen, Tastschirm, Berührungsbildschirm bzw. Sensorbildschirm ist ein kombiniertes Ein und Ausgabegerät, bei dem durch Berührung von Teilen eines Bildes der Programmablauf eines technischen Gerätes, meist eines Computers, direkt… …   Deutsch Wikipedia

  • Touchscreen — Sensorbildschirm; berührungsempfindlicher Bildschirm * * * Touch|screen 〈[ tʌ̣tʃskri:n] m. 6; EDV〉 berührungsempfindlicher Computerbildschirm, auf dem durch das Berühren bestimmter Sensorfelder auf der Oberfläche die Programmfunktionen gesteuert… …   Universal-Lexikon

  • Touchscreen — Écran tactile Un écran tactile est un périphérique informatique qui combine les fonctionnalités d affichage d un écran (moniteur) et celles d un dispositif de pointage, comme la souris ou une boule de commande (trackball). Cela permet de réduire… …   Wikipédia en Français

  • touchscreen — /tuch skreen /, n. Computers. a touch sensitive display screen: touching different portions of the screen with a finger will cause the computer to take actions determined by a program. Also, touch screen. [1970 75; TOUCH + SCREEN] * * * …   Universalium

  • TouchScreen — Ein /Ausgabegerät, Monitor mit Lichtschrankenraster vor der Frontscheibe, entwickelt von HP, hat sich wegen der Verschmutzung und ungenaün Positionsbestimmung bei mittlerem Aufwand nicht durchgesetzt …   Acronyms

  • Touchscreen — Touch·screen [ tatʃskriːn] der; s, s; EDV; ein Bildschirm, auf dem man durch Berührung mit einem Finger Befehle an einen Computer eingeben kann …   Langenscheidt Großwörterbuch Deutsch als Fremdsprache

  • Touchscreen — Touch|screen 〈 [tʌ̣tʃskri:n] m.; Gen.: s, Pl.: s; EDV〉 berührungsempfindlicher Computerbildschirm, auf dem durch das Berühren bestimmter Sensorfelder auf der Oberfläche die Programmfunktionen gesteuert werden [Etym.: <engl. touch »berühren« +… …   Lexikalische Deutsches Wörterbuch

  • Touchscreen — Touch|screen […skri:n] der; s, s <aus gleichbed. engl. touch screen, zu screen, vgl. ↑Screen> Computerbildschirm mit Sensorfeldern, durch deren Berühren der Programmablauf gesteuert werden kann …   Das große Fremdwörterbuch

  • TouchScreen — Ein /Ausgabegerät, Monitor mit Lichtschrankenraster vor der Frontscheibe, entwickelt von HP, hat sich wegen der Verschmutzung und ungenaün Positionsbestimmung bei mittlerem Aufwand nicht durchgesetzt …   Acronyms von A bis Z

  • touchscreen — touch′screen or touch′ screen n. cmp a computer display that can detect and respond to the presence and location of a finger or instrument on or near its surface • Etymology: 1970–75 …   From formal English to slang

From Simple English Wikipedia, the free encyclopedia

A touchscreen is a computer screen that can be used by touching it with a finger or a stylus pen, instead of using a mouse and keyboard. It can be described as a touchpad with a screen built-in to it.

Today, all kinds of devices, both big and small, make use of touchscreens. However, tablet computers and smartphones have made them popular and are the most widely known and used products that use touchscreens.

History[change | change source]

In 1965, E.A Johnson of England’s Royal Radar Establishment, invented[1] the first touchscreen that was used in the U.K for air traffic control up until around 1995. The first resistive touch screen was invented by G. Samuel Hurst in 1975, and produced in 1982. Back in 1970, Hurst and nine friends discovered that a touchscreen on a computer monitor made for an excellent method of interaction. Pressure on the cover sheet allowed voltage to flow between the X wires and the Y wires, which could be measured to indicate coordinates. This discovery helped found what we today refer to as resistive touch technology (because it responds purely to pressure rather than electrical conductivity, working with both a stylus and a finger).

Much later in 2005, three friends from France created a multi-touch screen capable of tracking any numbers of fingers. By 2005, their company named JazzMutant released the Lemur, a music controller with a multi-touch screen interface. This new technology helped influenced the TactaPad also made in 2005. Two years later, in January 2007, the iPhone was released, which was controlled entirely by a multi-touch screen.[2] It, and the iPad which came out in September 2010, were very successful and would eventually lead to more companies adding touchscreens to their products. They included Samsung, Sony, Motorola, and many companies who adopted the touch-friendly Android operating system.[3][4]

In response to the popularity of touchscreens, Microsoft, maker of the Windows family of operating systems for personal computers, would introduce a new interface in Windows 8 in 2011, which has large tiles that are meant to be easily usable with touch technology like those on tablets.[5] It would come out the next year, along with the Microsoft Surface tablet.[6]

Usage[change | change source]

Because of how easy they are to use, touchscreens can be found in many places. Along with general computing and consumer electronics devices such as smartphones, tablets, smartwatches and personal computers, touchscreens are also widely used on kiosks, which are used for information systems in cities and museums. They are also found on machines including Automatic Teller Machines (ATMs), cash registers and retail point-of-sale terminals, GPS navigation systems such as those in cars and other vehicles, medical equipment and industrial control panels. The touchscreen built into kiosks use simple point and click interaction. Interactive whiteboards, which can be found in many schools, also use a simple form of touch technology.

Types[change | change source]

Capacitive touchscreen diagram

Different kinds of touchscreens work in different ways. There are two main technologies used for touchscreens:

  • A resistive touchscreen has a layer of conducting polyester plastic. When you press on it, you force the polyester to touch the glass and complete an electric circuit. A chip under the screen identifies the coordinates of the place you touched. These screens can sense only one finger at a time and get confused if you try to press in two places at once. They are often used in industrial equipment because it is strong and responds to any kind of input, such as when wearing gloves.
  • A capacitive touchscreen has multiple layers of glass. Both the innermost and outermost layers of glass conduct electricity. The screen behaves like two electrical conductors separated by an insulator—in other words, a capacitor. Unlike resistive screens, capacitive screens can easily detect and distinguish more than one press at once. This is called multi-touch.

Unlike resistive screens, capacitive screens don’t work if you touch them with a plastic stylus because the plastic acts as an insulator. Some stylus pens, such as the Apple Pencil for the iPad Pro, are made to work with capacitive screens. They are pressure sensitive and let you to do different things by pushing harder or more gently. For example, you can draw a wider or narrower line in programs like Microsoft OneNote and Adobe Photoshop.

References[change | change source]

  1. Mary Bellis. «Who Invented Touch Screen Technology?». About Money. Retrieved May 21, 2015.[permanent dead link]
  2. «iPhone Touch Screen — How it Works». How Stuff Works. 2015. Retrieved May 21, 2015.
  3. Nicole Cohen (26 December 2011). «Timeline: A Histoty of Touch Screen Technology». NPR. Disqus. Retrieved May 21, 2015.
  4. «The Past, Present, and Future of Touch». Conde Nast. 2015. Retrieved May 7, 2015.
  5. Ferguson, Tim (2011-06-02). «Windows 8 revealed: Microsoft goes tablets and tiles with next OS». ZDNet. Retrieved 2018-03-16.
  6. Halliday, Josh (2012-10-25). «Microsoft Windows 8 launch and Surface event – as it happened». the Guardian. Retrieved 2018-03-16.

Словосочетания

touch screen — сенсорный экран
finger-touch screen — сенсорный экран
touch screen display — сенсорный дисплей
touch screen crucible — сенсорный экран
touch-screen payload — персональная ЭВМ с сенсорным экраном
touch-screen display — индикатор с сенсорным управлением; дисплей с сенсорным экраном
touch-screen monitor — монитор с сенсорным экраном
touch-sensitive screen — сенсорный экран

Автоматический перевод

сенсорный экран, сенсорный дисплей, экран касания, сенсорная панель, тактильный экран, сенсорный

Перевод по словам

touch  — прикасаться, касаться, прикосновение, штрих, чуточку
screen  — экран, сито, ширма, кино, грохот, завеса, экранировать, грохотить, экранизировать

Примеры

Touch screens get fingermarked.

На сенсорных экранах остаются отпечатки пальцев.

Touch the screen to activate the system.

Прикоснитесь к экрану, чтобы активировать систему.

Дополнение / ошибка

Смотрите также: 

Мультитран  Wikipedia(En)  Academic.ru  Reverso 

Выделите текст, чтобы посмотреть примеры

Закончилось время сессии

Обновите, пожалуйста, страницу. Набранный текст и перевод не потеряются.

Не удалось открыть подборки

Переводчик не смог соединиться с базой данных браузера. Если ошибка повторяется из раза в раз, пожалуйста, напишите в поддержку. Обратите внимание, что подборки могут не работать в режиме инкогнито.

Чтобы подборки заработали, перезапустите браузер

Перевод Тачскрин с русского на английский сделан онлайн Яндекс.Переводчиком — сервисом автоматического перевода слов, фраз, текстов и веб-страниц. Сервис сопровождает переводы примерами использования и транскрипцией, озвучивает слова. В режиме сайта переводит всё текстовое содержимое страниц. Знает Русский, Английский и ещё 98 языков.

Контекстный русско-англо-русский словарь БЕТА

Используйте контекстный словарь, чтобы искать переводы слов, выражений или целых фраз с
русского на английский
или с английского на русский.

Все варианты переводов сгруппированы и снабжены иллюстративным материалом в виде
примеров предложений с переводом
на соответствующий язык.

Сфера устройств мобильной связи развивается невиданными темпами. Еще не все успели привыкнуть к терминам «моноблок, слайдер и раскладушка», как появились новые. Например, независимо от пожеланий пользователей, производители насильно всех переводят на сенсорные экраны, отказываясь от аппаратных кнопок. Сейчас выбор кнопочных аппаратов, по сравнению с сенсорниками, ничтожно мал. Хорошо это или плохо – покажет время, но, совершенно определенно, знать, что такое тачскрин, должен каждый.

Этот необычный термин является объединением двух английских слов – «Touch» и «Screen», что в дословном переводе может быть прочитано как «реагирующий на прикосновения экран». Тот, кто задает вопрос «тачскрин: что это», просто не всегда представляет области применения данной технологии. Устройства с сенсорными экранами жители городов видят ежедневно по несколько раз на день: банковские боксы для приема платежей, справочные терминалы, мобильные телефоны и пр. При нажатии на определенные участки экрана, происходит регистрация факта прикосновения и обработка, согласно алгоритмам запущенной программы. Сейчас в Интернете есть много информации о том, что такое тачскрин. На самом деле общий принцип работы таких экранов довольно прост и в нем сможет разобраться даже человек, далекий от электротехники. Однако, хотя термин один и тот же, применяемую для изготовления технологию определяет тип сенсорного экрана.

Наверняка, каждый, кому довелось выбирать себе современный телефон, обращал внимание на описание разновидности сенсорного экрана – резистивный или емкостной. Тот, кто разбирается в вопросе «что такое тачскрин», легко выберет наилучшую модель, потому что понимает разницу между ними.

Основой любого тачскрина является матрица на жидких кристаллах (фактически, уменьшенная копия расположенной в мониторе). С ее обратной стороны находятся светоизлучающие диоды подсветки, а на лицевой поверхности – слои, фиксирующие нажатия (резистивная технология) и прикосновения (емкостная разновидность).

Человек, изучивший, что такое тачскрин, без сомнения, знает, что больше половины устройств используют резистивные сенсорные экраны. Это объясняется относительной простотой их конструкции и дешевизной. Большинство китайских «смартфонов», заполонивших рынок, выполнены именно по резистивной технологии. Кроме того, что немаловажно, эта разновидность экранов появилась первой.

Сенсор резистивного типа представляет собой две прозрачные пластмассовые пластины с тонкой сеткой из токопроводящего материала, расположенные поверх жидкокристаллического экрана. Между ними находится диэлектрический слой (также прозрачный). Так как изображение на матрице хорошо просматривается, программы выводят графический интерактивный интерфейс. Пользователь, в ответ на запрос программы, нажимает на какую-то определенную точку интерфейса (например, изображенную кнопку). В результате пластичный диэлектрик расходится, а пластмассовые пластины соприкасаются. Ток, подающийся на электрод одной из них, попадает на сетку другой. Регистрирующий контроллер улавливает появление тока и в соответствии с координатной сеткой определяет точку нажатия. Ее координаты передаются работающей программе и, в соответствии с заложенными алгоритмами, обрабатываются.

Следствия:

  • простого прикосновения недостаточно, нужно именно нажатие;
  • из-за перераспределения массы изолирующего слоя через время необходима калибровка экрана;
  • количество нажатий на каждый участок экрана ограничено (от 3 до 35 млн.).

Иначе устроены емкостные экраны. В них на верхнюю поверхность экрана нанесено прозрачное проводящее ток покрытие, с подключенными по углам электродами. При прикосновении человека (большая емкость) к такому слою происходит утечка тока в тело. Координаты точки касания вычисляются и обрабатываются. Сенсорные экраны, созданные по такой технологии, выдерживают свыше 200 млн. прикосновений.

05.08.2019

1,024 Просмотры

Тачскрин (от английских слов touch – прикосновение и screen – экран) – технология, позволяющая вводить информацию в устройство, без участия клавиатуры и контроллеров.

Идея взаимодействия с устройством через дисплей была впервые описана в научных работах американца Е. А. Джонса в 1965 году. В 1970-х появились первые устройства с тачскрином. Но наибольшую популярность технология с повсеместным распространением телефонов и кпк (карманный персональный компьютер) с 2000-х годов. И сейчас такие экраны используются повсеместно – в смартфонах, планшетах, портативных и стационарных компьютерах, банковских терминалах и на устройствах самообслуживания.

Сенсорный экран мобильных устройств

Как работает тачскрин

Принцип работы сенсорной панели прост: пользователь касается экрана и это вызывает ответные действия устройства. С технической точки зрения есть несколько вариантов исполнения этой манипуляции. В телефонах используются два вида тачскрина: резистивный и емкостный.

Резистивный сенсорный экран

Самый простой и доступный вид тачскрина. Раньше использовался во всех телефонах, смартфонах, планшетах и кпк, поддерживавших эту функцию. Сейчас применяется редко.


Состоит из стеклянной панели, мягкой пластиковой панели и специального резистивного слоя между ними. Пользователь надавливает на экран, пластиковая панель продавливается до стекла и замыкает электрическую цепь. Это нажатие фиксируется и обрабатывается устройством.

Принцип действия резистивного сенсора

Плюсы:

  • низкая стоимость;
  • тачскрин реагирует не только на пальцы, но и любой предмет;
  • легкое управление.

Минусы:

  • хрупкость – очень быстро появляются царапины и сколы;
  • неустойчивость к перепадам температуры;
  • недолговечность – панель выдержит до 34 млн. нажатий;
  • нет функций мультитача и скольжения – на экран надо именно нажимать, а не касаться.

Емкостный сенсорный экран

Практически все смартфоны, выпущенные последние несколько лет, оснащаются емкостными тачскринами.


Состоит из стеклянной панели и нанесенного на нее резистивного слоя. Суть работы такова, что при касании экрана происходит утечка тока. Её можно измерить и зафиксировать местонахождение. По углам панели расположены электроды, дающие небольшое напряжение на экран. При утечке тока, они фиксируют нужную информацию и передают её устройству.

Принцип работы емкостного сенсора

Плюсы:

  • надёжность благодаря более простой конструкции;
  • долговечность – выдерживает до 200 млн. нажатий;
  • качественное изображение на экране.

Минусы:

  • тачскрин реагирует только на пальцы и специальные стилусы;
  • более высокая цена по сравнению с резистивными панелями.

Загрузка…

chto-takoe-tachskrin-v-planshete-ili-smartfone

Еще совсем недавно мало кто мог поверить в то, что телефоны с привычными кнопками уступят место устройствам, которые управляются с помощью прикосновения к экрану. Но времена меняются и спрос на кнопочные телефоны постепенно падает, а на смартфоны — растет.

Термин «тачскрин» образовался от двух слов — Touch и Screen, что в переводе с английского языка переводится как «сенсорный экран». Да, именно так — тачскрин и есть сенсорный экран, к которому вы прикасаетесь, когда пользуетесь своим смартфоном или планшетом. На деле же сенсорные экраны встречаются не только в мире мобильной техники. Так, вы могли видеть их при внесении средств на счет мобильного устройства через терминал, в банкомате, в билетных устройствах и т.д.

Тачскрин как пишется на английском

Важно обратить внимание на то, что существует несколько различных принципов работы сенсорных экранов, в зависимости от того, где и для чего они используются. Разумеется, разнится и стоимость технологии. Так, нет никакого смысла применять высокотехнологичные сенсорные экраны для терминалов пополнения счета мобильной связи, чего не скажешь о тех же смартфонах.

Что представляет из себя тачскрин?

В современных смартфонах используются емкостные сенсорные экраны. Они представляют из себя стеклянную панель, на которую нанесен слой прозрачного резистивного материала. В углах расположены электроды, которые подают на проводящий слой низковольтное переменное напряжение. Тело человека может проводить через себя электрический ток, а также обладает определенной емкостью. Поэтому во время прикосновения к экрану возникает утечка и место этой утечки определяет контроллер, который использует данные с электродов по углам панели.

Тачскрин как пишется на английском

В КПК, которые сегодня в продаже почти не встречаются, используются резистивные экраны, в которых помимо стеклянной панели имеется гибкая мембрана. Поверхность между ними заполнена микро-изоляторами. Когда на экран производится нажатие, мембрана и панель замыкаются, после чего контроллер фиксирует изменение сопротивления и преобразует его в координаты прикосновения.

Тачскрин как пишется на английском

Запомните, емкостный экран не реагирует на нажатие предмета и даже простейшего стилуса (нужен стилус со специальным наконечником), в то время как резистивные экраны реагируют абсолютно на любое прикосновение.

Можно ли заменить тачскрин?

В случае, если пользователь разбил тачскрин или тот вышел из строя по тем или иным причинам (например, перестал реагировать на нажатия), возможна замена тачскрина. Замену желательно производить в специализированном сервисе с гарантией.

A user operating a touchscreen

A touchscreen or touch screen is the assembly of both an input (‘touch panel’) and output (‘display’) device. The touch panel is normally layered on the top of an electronic visual display of an electronic device.

The display is often an LCD, AMOLED or OLED display.

A user can give input or control the information processing system through simple or multi-touch gestures by touching the screen with a special stylus or one or more fingers.[1] Some touchscreens use ordinary or specially coated gloves to work, while others may only work using a special stylus or pen. The user can use the touchscreen to react to what is displayed and, if the software allows, to control how it is displayed; for example, zooming to increase the text size.

The touchscreen enables the user to interact directly with what is displayed, rather than using a mouse, touchpad, or other such devices (other than a stylus, which is optional for most modern touchscreens).[2]

Touchscreens are common in devices such as smartphones, handheld game consoles, personal computers, electronic voting machines, automated teller machines and point-of-sale (POS) systems. They can also be attached to computers or, as terminals, to networks. They play a prominent role in the design of digital appliances such as personal digital assistants (PDAs) and some e-readers. Touchscreens are also important in educational settings such as classrooms or on college campuses.[3]

The popularity of smartphones, tablets, and many types of information appliances is driving the demand and acceptance of common touchscreens for portable and functional electronics. Touchscreens are found in the medical field, heavy industry, automated teller machines (ATMs), and kiosks such as museum displays or room automation, where keyboard and mouse systems do not allow a suitably intuitive, rapid, or accurate interaction by the user with the display’s content.

Historically, the touchscreen sensor and its accompanying controller-based firmware have been made available by a wide array of after-market system integrators, and not by display, chip, or motherboard manufacturers. Display manufacturers and chip manufacturers have acknowledged the trend toward acceptance of touchscreens as a user interface component and have begun to integrate touchscreens into the fundamental design of their products.

History[edit]

One predecessor of the modern touch screen includes stylus based systems. In 1946, a patent was filed by Philco Company for a stylus designed for sports telecasting which, when placed against an intermediate cathode ray tube display (CRT) would amplify and add to the original signal. Effectively, this was used for temporarily drawing arrows or circles onto a live television broadcast, as described in US 2487641A, Denk, William E, «Electronic pointer for television images», issued 1949-11-08. Later inventions built upon this system to free telewriting styli from their mechanical bindings. By transcribing what a user draws onto a computer, it could be saved for future use. See US 3089918A, Graham, Robert E, «Telewriting apparatus», issued 1963-05-14.

The first version of a touchscreen which operated independently of the light produced from the screen was patented by AT&T Corporation US 3016421A, Harmon, Leon D, «Electrographic transmitter», issued 1962-01-09. This touchscreen utilized a matrix of collimated lights shining orthogonally across the touch surface. When a beam is interrupted by a stylus, the photodetectors which no longer are receiving a signal can be used to determine where the interruption is. Later iterations of matrix based touchscreens built upon this by adding more emitters and detectors to improve resolution, pulsing emitters to improve optical signal to noise ratio, and a nonorthogonal matrix to remove shadow readings when using multi-touch.

The first finger driven touch screen was developed by Eric Johnson, of the Royal Radar Establishment located in Malvern, England, who described his work on capacitive touchscreens in a short article published in 1965[8][9] and then more fully—with photographs and diagrams—in an article published in 1967.[10] The application of touch technology for air traffic control was described in an article published in 1968.[11] Frank Beck and Bent Stumpe, engineers from CERN (European Organization for Nuclear Research), developed a transparent touchscreen in the early 1970s,[12] based on Stumpe’s work at a television factory in the early 1960s. Then manufactured by CERN, and shortly after by industry partners,[13] it was put to use in 1973.[14]
In the mid-1960s, another precursor of touchscreens, an ultrasonic-curtain-based pointing device in front of a terminal display, had been developed by a team around Rainer Mallebrein [de] at Telefunken Konstanz for an air traffic control system.[15] In 1970, this evolved into a device named «Touchinput-Einrichtung» («touch input facility») for the SIG 50 terminal utilizing a conductively coated glass screen in front of the display.[16][15] This was patented in 1971 and the patent was granted a couple of years later.[16][15] The same team had already invented and marketed the Rollkugel mouse RKS 100-86 for the SIG 100-86 a couple of years earlier.[16]

In 1972, a group at the University of Illinois filed for a patent on an optical touchscreen[17] that became a standard part of the Magnavox Plato IV Student Terminal and thousands were built for this purpose. These touchscreens had a crossed array of 16×16 infrared position sensors, each composed of an LED on one edge of the screen and a matched phototransistor on the other edge, all mounted in front of a monochrome plasma display panel. This arrangement could sense any fingertip-sized opaque object in close proximity to the screen. A similar touchscreen was used on the HP-150 starting in 1983. The HP 150 was one of the world’s earliest commercial touchscreen computers.[18] HP mounted their infrared transmitters and receivers around the bezel of a 9-inch Sony cathode ray tube (CRT).

In 1977, an American company, Elographics – in partnership with Siemens – began work on developing a transparent implementation of an existing opaque touchpad technology, U.S. patent No. 3,911,215, October 7, 1975, which had been developed by Elographics’ founder George Samuel Hurst.[19] The resulting resistive technology touch screen was first shown on the World’s Fair at Knoxville in 1982.[20]

In 1984, Fujitsu released a touch pad for the Micro 16 to accommodate the complexity of kanji characters, which were stored as tiled graphics.[21] In 1985, Sega released the Terebi Oekaki, also known as the Sega Graphic Board, for the SG-1000 video game console and SC-3000 home computer. It consisted of a plastic pen and a plastic board with a transparent window where pen presses are detected. It was used primarily with a drawing software application.[22] A graphic touch tablet was released for the Sega AI computer in 1986.[23][24]

Touch-sensitive control-display units (CDUs) were evaluated for commercial aircraft flight decks in the early 1980s. Initial research showed that a touch interface would reduce pilot workload as the crew could then select waypoints, functions and actions, rather than be «head down» typing latitudes, longitudes, and waypoint codes on a keyboard. An effective integration of this technology was aimed at helping flight crews maintain a high level of situational awareness of all major aspects of the vehicle operations including the flight path, the functioning of various aircraft systems, and moment-to-moment human interactions.[25]

In the early 1980s, General Motors tasked its Delco Electronics division with a project aimed at replacing an automobile’s non-essential functions (i.e. other than throttle, transmission, braking, and steering) from mechanical or electro-mechanical systems with solid state alternatives wherever possible. The finished device was dubbed the ECC for «Electronic Control Center», a digital computer and software control system hardwired to various peripheral sensors, servos, solenoids, antenna and a monochrome CRT touchscreen that functioned both as display and sole method of input.[26] The ECC replaced the traditional mechanical stereo, fan, heater and air conditioner controls and displays, and was capable of providing very detailed and specific information about the vehicle’s cumulative and current operating status in real time. The ECC was standard equipment on the 1985–1989 Buick Riviera and later the 1988–1989 Buick Reatta, but was unpopular with consumers—partly due to the technophobia of some traditional Buick customers, but mostly because of costly technical problems suffered by the ECC’s touchscreen which would render climate control or stereo operation impossible.[27]

Multi-touch technology began in 1982, when the University of Toronto’s Input Research Group developed the first human-input multi-touch system, using a frosted-glass panel with a camera placed behind the glass. In 1985, the University of Toronto group, including Bill Buxton, developed a multi-touch tablet that used capacitance rather than bulky camera-based optical sensing systems (see History of multi-touch).

The first commercially available graphical point-of-sale (POS) software was demonstrated on the 16-bit Atari 520ST color computer. It featured a color touchscreen widget-driven interface.[28] The ViewTouch[29] POS software was first shown by its developer, Gene Mosher, at the Atari Computer demonstration area of the Fall COMDEX expo in 1986.[30]

In 1987, Casio launched the Casio PB-1000 pocket computer with a touchscreen consisting of a 4×4 matrix, resulting in 16 touch areas in its small LCD graphic screen.

Touchscreens had a bad reputation of being imprecise until 1988. Most user-interface books would state that touchscreen selections were limited to targets larger than the average finger. At the time, selections were done in such a way that a target was selected as soon as the finger came over it, and the corresponding action was performed immediately. Errors were common, due to parallax or calibration problems, leading to user frustration. «Lift-off strategy»[31] was introduced by researchers at the University of Maryland Human–Computer Interaction Lab (HCIL). As users touch the screen, feedback is provided as to what will be selected: users can adjust the position of the finger, and the action takes place only when the finger is lifted off the screen. This allowed the selection of small targets, down to a single pixel on a 640×480 Video Graphics Array (VGA) screen (a standard of that time).

Sears et al. (1990)[32] gave a review of academic research on single and multi-touch human–computer interaction of the time, describing gestures such as rotating knobs, adjusting sliders, and swiping the screen to activate a switch (or a U-shaped gesture for a toggle switch). The HCIL team developed and studied small touchscreen keyboards (including a study that showed users could type at 25 wpm on a touchscreen keyboard), aiding their introduction on mobile devices. They also designed and implemented multi-touch gestures such as selecting a range of a line, connecting objects, and a «tap-click» gesture to select while maintaining location with another finger.

In 1990, HCIL demonstrated a touchscreen slider,[33] which was later cited as prior art in the lock screen patent litigation between Apple and other touchscreen mobile phone vendors (in relation to U.S. Patent 7,657,849).[34]

In 1991–1992, the Sun Star7 prototype PDA implemented a touchscreen with inertial scrolling.[35] In 1993, IBM released the IBM Simon the first touchscreen phone.

An early attempt at a handheld game console with touchscreen controls was Sega’s intended successor to the Game Gear, though the device was ultimately shelved and never released due to the expensive cost of touchscreen technology in the early 1990s.

The first mobile phone with a capacitive touchscreen was LG Prada released in May 2007 (which was before the first iPhone).[36] By 2009, touchscreen-enabled mobile phones were becoming trendy and quickly gaining popularity in both basic and advanced devices.[37][38] In Q4 2009 for the first time, a majority of smartphones (i.e. not all mobile phones) shipped with touchscreens over non-touch.[39]

Touchscreens would not be popularly used for video games until the release of the Nintendo DS in 2004.[40] Until recently,[when?] most consumer touchscreens could only sense one point of contact at a time, and few have had the capability to sense how hard one is touching. This has changed with the commercialization of multi-touch technology, and the Apple Watch being released with a force-sensitive display in April 2015.

In 2007, 93% of touchscreens shipped were resistive and only 4% were projected capacitance. In 2013, 3% of touchscreens shipped were resistive and 90% were projected capacitance.[41]

Technologies[edit]

There is a variety of touchscreen technologies with different methods of sensing touch.[32]

Resistive[edit]

A resistive touchscreen panel comprises several thin layers, the most important of which are two transparent electrically resistive layers facing each other with a thin gap between. The top layer (that which is touched) has a coating on the underside surface; just beneath it is a similar resistive layer on top of its substrate. One layer has conductive connections along its sides, the other along top and bottom. A voltage is applied to one layer and sensed by the other. When an object, such as a fingertip or stylus tip, presses down onto the outer surface, the two layers touch to become connected at that point.[42] The panel then behaves as a pair of voltage dividers, one axis at a time. By rapidly switching between each layer, the position of pressure on the screen can be detected.

Resistive touch is used in restaurants, factories and hospitals due to its high tolerance for liquids and contaminants. A major benefit of resistive-touch technology is its low cost. Additionally, as only sufficient pressure is necessary for the touch to be sensed, they may be used with gloves on, or by using anything rigid as a finger substitute. Disadvantages include the need to press down, and a risk of damage by sharp objects. Resistive touchscreens also suffer from poorer contrast, due to having additional reflections (i.e. glare) from the layers of material placed over the screen.[43] This is the type of touchscreen that was used by Nintendo in the DS family, the 3DS family, and the Wii U GamePad.[44]

Surface acoustic wave[edit]

Surface acoustic wave (SAW) technology uses ultrasonic waves that pass over the touchscreen panel. When the panel is touched, a portion of the wave is absorbed. The change in ultrasonic waves is processed by the controller to determine the position of the touch event. Surface acoustic wave touchscreen panels can be damaged by outside elements. Contaminants on the surface can also interfere with the functionality of the touchscreen.

SAW devices have a wide range of applications, including delay lines, filters, correlators and DC to DC converters.

Capacitive[edit]

Capacitive touchscreen of a mobile phone

The Casio TC500 Capacitive touch sensor watch from 1983, with angled light exposing the touch sensor pads and traces etched onto the top watch glass surface.

A capacitive touchscreen panel consists of an insulator, such as glass, coated with a transparent conductor, such as indium tin oxide (ITO).[45] As the human body is also an electrical conductor, touching the surface of the screen results in a distortion of the screen’s electrostatic field, measurable as a change in capacitance. Different technologies may be used to determine the location of the touch. The location is then sent to the controller for processing. Touchscreens that use silver instead of ITO exist, as ITO causes several environmental problems due to the use of indium.[46][47][48][49] The controller is typically a complementary metal–oxide–semiconductor (CMOS) application-specific integrated circuit (ASIC) chip, which in turn usually sends the signals to a CMOS digital signal processor (DSP) for processing.[50][51]

Unlike a resistive touchscreen, some capacitive touchscreens cannot be used to detect a finger through electrically insulating material, such as gloves. This disadvantage especially affects usability in consumer electronics, such as touch tablet PCs and capacitive smartphones in cold weather when people may be wearing gloves. It can be overcome with a special capacitive stylus, or a special-application glove with an embroidered patch of conductive thread allowing electrical contact with the user’s fingertip.

A low-quality switching-mode power supply unit with an accordingly unstable, noisy voltage may temporarily interfere with the precision, accuracy and sensitivity of capacitive touch screens.[52][53][54]

Some capacitive display manufacturers continue to develop thinner and more accurate touchscreens. Those for mobile devices are now being produced with ‘in-cell’ technology, such as in Samsung’s Super AMOLED screens, that eliminates a layer by building the capacitors inside the display itself. This type of touchscreen reduces the visible distance between the user’s finger and what the user is touching on the screen, reducing the thickness and weight of the display, which is desirable in smartphones.

A simple parallel-plate capacitor has two conductors separated by a dielectric layer. Most of the energy in this system is concentrated directly between the plates. Some of the energy spills over into the area outside the plates, and the electric field lines associated with this effect are called fringing fields. Part of the challenge of making a practical capacitive sensor is to design a set of printed circuit traces which direct fringing fields into an active sensing area accessible to a user. A parallel-plate capacitor is not a good choice for such a sensor pattern. Placing a finger near fringing electric fields adds conductive surface area to the capacitive system. The additional charge storage capacity added by the finger is known as finger capacitance, or CF. The capacitance of the sensor without a finger present is known as parasitic capacitance, or CP.

Surface capacitance[edit]

In this basic technology, only one side of the insulator is coated with a conductive layer. A small voltage is applied to the layer, resulting in a uniform electrostatic field. When a conductor, such as a human finger, touches the uncoated surface, a capacitor is dynamically formed. The sensor’s controller can determine the location of the touch indirectly from the change in the capacitance as measured from the four corners of the panel. As it has no moving parts, it is moderately durable but has limited resolution, is prone to false signals from parasitic capacitive coupling, and needs calibration during manufacture. It is therefore most often used in simple applications such as industrial controls and kiosks.[55]

Although some standard capacitance detection methods are projective, in the sense that they can be used to detect a finger through a non-conductive surface, they are very sensitive to fluctuations in temperature, which expand or contract the sensing plates, causing fluctuations in the capacitance of these plates.[56] These fluctuations result in a lot of background noise, so a strong finger signal is required for accurate detection. This limits applications to those where the finger directly touches the sensing element or is sensed through a relatively thin non-conductive surface.

Projected capacitance[edit]

Back side of a Multitouch Globe, based on projected capacitive touch (PCT) technology

8 x 8 projected capacitance touchscreen manufactured using 25 micron insulation coated copper wire embedded in a clear polyester film.

This diagram shows how eight inputs to a lattice touchscreen or keypad creates 28 unique intersections, as opposed to 16 intersections created using a standard x/y multiplexed touchscreen .

Schema of projected-capacitive touchscreen

Projected capacitive touch (PCT; also PCAP) technology is a variant of capacitive touch technology but where sensitivity to touch, accuracy, resolution and speed of touch have been greatly improved by the use of a simple form of
«Artificial Intelligence». This intelligent processing enables finger sensing to be projected, accurately and reliably, through very thick glass and even double glazing.[57]

Some modern PCT touch screens are composed of thousands of discrete keys,[58] but most PCT touch screens are made of an x/y matrix of rows and columns of conductive material, layered on sheets of glass.
This can be done either by etching a single conductive layer to form a grid pattern of electrodes, by etching two separate, perpendicular layers of conductive material with parallel lines or tracks to form a grid, or by forming an x/y grid of fine, insulation coated wires in a single layer . The number of fingers that can be detected simultaneously is determined by the number of cross-over points (x * y) . However, the number of cross-over points can be almost doubled by using a diagonal lattice layout, where, instead of x elements only ever crossing y elements, each conductive element crosses every other element .[59]

The conductive layer is often transparent, being made of Indium tin oxide (ITO), a transparent electrical conductor.
In some designs, voltage applied to this grid creates a uniform electrostatic field, which can be measured. When a conductive object, such as a finger, comes into contact with a PCT panel, it distorts the local electrostatic field at that point. This is measurable as a change in capacitance. If a finger bridges the gap between two of the «tracks», the charge field is further interrupted and detected by the controller. The capacitance can be changed and measured at every individual point on the grid. This system is able to accurately track touches.[60]

Due to the top layer of a PCT being glass, it is sturdier than less-expensive resistive touch technology.
Unlike traditional capacitive touch technology, it is possible for a PCT system to sense a passive stylus or gloved finger. However, moisture on the surface of the panel, high humidity, or collected dust can interfere with performance.
These environmental factors, however, are not a problem with ‘fine wire’ based touchscreens due to the fact that wire based touchscreens have a much lower ‘parasitic’ capacitance, and there is greater distance between neighbouring conductors.

There are two types of PCT: mutual capacitance and self-capacitance.

Mutual capacitance[edit]

This is a common PCT approach, which makes use of the fact that most conductive objects are able to hold a charge if they are very close together. In mutual capacitive sensors, a capacitor is inherently formed by the row trace and column trace at each intersection of the grid. A 16×14 array, for example, would have 224 independent capacitors. A voltage is applied to the rows or columns. Bringing a finger or conductive stylus close to the surface of the sensor changes the local electrostatic field, which in turn reduces the mutual capacitance. The capacitance change at every individual point on the grid can be measured to accurately determine the touch location by measuring the voltage in the other axis. Mutual capacitance allows multi-touch operation where multiple fingers, palms or styli can be accurately tracked at the same time.

Self-capacitance[edit]

Self-capacitance sensors can have the same X-Y grid as mutual capacitance sensors, but the columns and rows operate independently. With self-capacitance, the capacitive load of a finger is measured on each column or row electrode by a current meter, or the change in frequency of an RC oscillator.[61]

A finger may be detected anywhere along the whole length of a row.
If that finger is also detected by a column, then it can be assumed that the finger position is at the intersection of this row/column pair.
This allows for the speedy and accurate detection of a single finger, but it causes some ambiguity if more than one finger is to be detected.
[62]
Two fingers may have four possible detection positions, only two of which are true. However, by selectively de-sensitizing any touch-points in contention, conflicting results are easily eliminated.[63] This enables «Self Capacitance» to be used for multi-touch operation.

Alternatively, ambiguity can be avoided by applying a «de-sensitizing» signal to all but one of the columns .[63]
This leaves just a short section of any row sensitive to touch. By selecting a sequence of these sections along the row, it is possible to determine the accurate position of multiple fingers along that row. This process can then be repeated for all the other rows until the whole screen has been scanned.

Self-capacitive touch screen layers are used on mobile phones such as the Sony Xperia Sola,[64] the Samsung Galaxy S4, Galaxy Note 3, Galaxy S5, and Galaxy Alpha.

Self capacitance is far more sensitive than mutual capacitance and is mainly used for single touch, simple gesturing and proximity sensing where the finger does not even have to touch the glass surface.
Mutual capacitance is mainly used for multitouch applications.
[65]
Many touchscreen manufacturers use both self and mutual capacitance technologies in the same product, thereby combining their individual benefits.
[66]

Use of stylus on capacitive screens[edit]

Capacitive touchscreens do not necessarily need to be operated by a finger, but until recently the special styli required could be quite expensive to purchase. The cost of this technology has fallen greatly in recent years and capacitive styli are now widely available for a nominal charge, and often given away free with mobile accessories. These consist of an electrically conductive shaft with a soft conductive rubber tip, thereby resistively connecting the fingers to the tip of the stylus.

Infrared grid[edit]

Infrared sensors mounted around the display watch for a user’s touchscreen input on this PLATO V terminal in 1981. The monochromatic plasma display’s characteristic orange glow is illustrated.

An infrared touchscreen uses an array of X-Y infrared LED and photodetector pairs around the edges of the screen to detect a disruption in the pattern of LED beams. These LED beams cross each other in vertical and horizontal patterns. This helps the sensors pick up the exact location of the touch. A major benefit of such a system is that it can detect essentially any opaque object including a finger, gloved finger, stylus or pen. It is generally used in outdoor applications and POS systems that cannot rely on a conductor (such as a bare finger) to activate the touchscreen. Unlike capacitive touchscreens, infrared touchscreens do not require any patterning on the glass which increases durability and optical clarity of the overall system. Infrared touchscreens are sensitive to dirt and dust that can interfere with the infrared beams, and suffer from parallax in curved surfaces and accidental press when the user hovers a finger over the screen while searching for the item to be selected.

Infrared acrylic projection[edit]

A translucent acrylic sheet is used as a rear-projection screen to display information. The edges of the acrylic sheet are illuminated by infrared LEDs, and infrared cameras are focused on the back of the sheet. Objects placed on the sheet are detectable by the cameras. When the sheet is touched by the user, frustrated total internal reflection results in leakage of infrared light which peaks at the points of maximum pressure, indicating the user’s touch location. Microsoft’s PixelSense tablets use this technology.

Optical imaging[edit]

Optical touchscreens are a relatively modern development in touchscreen technology, in which two or more image sensors (such as CMOS sensors) are placed around the edges (mostly the corners) of the screen. Infrared backlights are placed in the sensor’s field of view on the opposite side of the screen. A touch blocks some lights from the sensors, and the location and size of the touching object can be calculated (see visual hull). This technology is growing in popularity due to its scalability, versatility, and affordability for larger touchscreens.

Dispersive signal technology[edit]

Introduced in 2002 by 3M, this system detects a touch by using sensors to measure the piezoelectricity in the glass. Complex algorithms interpret this information and provide the actual location of the touch.[67] The technology is unaffected by dust and other outside elements, including scratches. Since there is no need for additional elements on screen, it also claims to provide excellent optical clarity. Any object can be used to generate touch events, including gloved fingers. A downside is that after the initial touch, the system cannot detect a motionless finger. However, for the same reason, resting objects do not disrupt touch recognition.

Acoustic pulse recognition[edit]

The key to this technology is that a touch at any one position on the surface generates a sound wave in the substrate which then produces a unique combined signal as measured by three or more tiny transducers attached to the edges of the touchscreen. The digitized signal is compared to a list corresponding to every position on the surface, determining the touch location. A moving touch is tracked by rapid repetition of this process. Extraneous and ambient sounds are ignored since they do not match any stored sound profile. The technology differs from other sound-based technologies by using a simple look-up method rather than expensive signal-processing hardware. As with the dispersive signal technology system, a motionless finger cannot be detected after the initial touch. However, for the same reason, the touch recognition is not disrupted by any resting objects. The technology was created by SoundTouch Ltd in the early 2000s, as described by the patent family EP1852772, and introduced to the market by Tyco International’s Elo division in 2006 as Acoustic Pulse Recognition.[68] The touchscreen used by Elo is made of ordinary glass, giving good durability and optical clarity. The technology usually retains accuracy with scratches and dust on the screen. The technology is also well suited to displays that are physically larger.

Construction[edit]

[icon]

This section needs expansion. You can help by adding to it. (September 2017)

There are several principal ways to build a touchscreen. The key goals are to recognize one or more fingers touching a display, to interpret the command that this represents, and to communicate the command to the appropriate application.

In the resistive approach, which used to be the most popular technique, there are typically four layers:

  1. Top polyester-coated layer with a transparent metallic-conductive coating on the bottom.
  2. Adhesive spacer
  3. Glass layer coated with a transparent metallic-conductive coating on the top
  4. Adhesive layer on the backside of the glass for mounting.

When a user touches the surface, the system records the change in the electric current that flows through the display.

Dispersive-signal technology measures the piezoelectric effect—the voltage generated when mechanical force is applied to a material—that occurs chemically when a strengthened glass substrate is touched.

There are two infrared-based approaches. In one, an array of sensors detects a finger touching or almost touching the display, thereby interrupting infrared light beams projected over the screen. In the other, bottom-mounted infrared cameras record heat from screen touches.

In each case, the system determines the intended command based on the controls showing on the screen at the time and the location of the touch.

Development[edit]

The development of multi-touch screens facilitated the tracking of more than one finger on the screen; thus, operations that require more than one finger are possible. These devices also allow multiple users to interact with the touchscreen simultaneously.

With the growing use of touchscreens, the cost of touchscreen technology is routinely absorbed into the products that incorporate it and is nearly eliminated. Touchscreen technology has demonstrated reliability and is found in airplanes, automobiles, gaming consoles, machine control systems, appliances, and handheld display devices including cellphones; the touchscreen market for mobile devices was projected to produce US$5 billion by 2009.[69][needs update]

The ability to accurately point on the screen itself is also advancing with the emerging graphics tablet-screen hybrids. Polyvinylidene fluoride (PVDF) plays a major role in this innovation due its high piezoelectric properties, which allow the tablet to sense pressure, making such things as digital painting behave more like paper and pencil.[70]

TapSense, announced in October 2011, allows touchscreens to distinguish what part of the hand was used for input, such as the fingertip, knuckle and fingernail. This could be used in a variety of ways, for example, to copy and paste, to capitalize letters, to activate different drawing modes, etc.[71][72]

A real practical integration between television-images and the functions of a normal modern PC could be an innovation in the near future: for example «all-live-information» on the internet about a film or the actors on video, a list of other music during a normal video clip of a song or news about a person.

Ergonomics and usage[edit]

Touchscreen enable[edit]

For touchscreens to be effective input devices, users must be able to accurately select targets and avoid accidental selection of adjacent targets. The design of touchscreen interfaces should reflect technical capabilities of the system, ergonomics, cognitive psychology and human physiology.

Guidelines for touchscreen designs were first developed in the 2000s, based on early research and actual use of older systems, typically using infrared grids—which were highly dependent on the size of the user’s fingers. These guidelines are less relevant for the bulk of modern touch devices which use capacitive or resistive touch technology.[73][74]

From the mid-2000s, makers of operating systems for smartphones have promulgated standards, but these vary between manufacturers, and allow for significant variation in size based on technology changes, so are unsuitable from a human factors perspective.[75][76][77]

Much more important is the accuracy humans have in selecting targets with their finger or a pen stylus. The accuracy of user selection varies by position on the screen: users are most accurate at the center, less so at the left and right edges, and least accurate at the top edge and especially the bottom edge. The R95 accuracy (required radius for 95% target accuracy) varies from 7 mm (0.28 in) in the center to 12 mm (0.47 in) in the lower corners.[78][79][80][81][82] Users are subconsciously aware of this, and take more time to select targets which are smaller or at the edges or corners of the touchscreen.[83]

This user inaccuracy is a result of parallax, visual acuity and the speed of the feedback loop between the eyes and fingers. The precision of the human finger alone is much, much higher than this, so when assistive technologies are provided—such as on-screen magnifiers—users can move their finger (once in contact with the screen) with precision as small as 0.1 mm (0.004 in).[84][dubious – discuss]

Hand position, digit used and switching[edit]

Users of handheld and portable touchscreen devices hold them in a variety of ways, and routinely change their method of holding and selection to suit the position and type of input. There are four basic types of handheld interaction:

  • Holding at least in part with both hands, tapping with a single thumb
  • Holding with two hands and tapping with both thumbs
  • Holding with one hand, tapping with the finger (or rarely, thumb) of another hand
  • Holding the device in one hand, and tapping with the thumb from that same hand

Use rates vary widely. While two-thumb tapping is encountered rarely (1–3%) for many general interactions, it is used for 41% of typing interaction.[85]

In addition, devices are often placed on surfaces (desks or tables) and tablets especially are used in stands. The user may point, select or gesture in these cases with their finger or thumb, and vary use of these methods.[86]

Combined with haptics[edit]

Touchscreens are often used with haptic response systems. A common example of this technology is the vibratory feedback provided when a button on the touchscreen is tapped. Haptics are used to improve the user’s experience with touchscreens by providing simulated tactile feedback, and can be designed to react immediately, partly countering on-screen response latency. Research from the University of Glasgow (Brewster, Chohan, and Brown, 2007; and more recently Hogan) demonstrates that touchscreen users reduce input errors (by 20%), increase input speed (by 20%), and lower their cognitive load (by 40%) when touchscreens are combined with haptics or tactile feedback. On top of this, a study conducted in 2013 by Boston College explored the effects that touchscreens haptic stimulation had on triggering psychological ownership of a product. Their research concluded that a touchscreens ability to incorporate high amounts of haptic involvement resulted in customers feeling more endowment to the products they were designing or buying. The study also reported that consumers using a touchscreen were willing to accept a higher price point for the items they were purchasing.[87]

Customer service[edit]

Touchscreen technology has become integrated into many aspects of customer service industry in the 21st century.[88] The restaurant industry is a good example of touchscreen implementation into this domain. Chain restaurants such as Taco Bell,[89] Panera Bread, and McDonald’s offer touchscreens as an option when customers are ordering items off the menu.[90] While the addition of touchscreens is a development for this industry, customers may choose to bypass the touchscreen and order from a traditional cashier.[89] To take this a step further, a restaurant in Bangalore has attempted to completely automate the ordering process. Customers sit down to a table embedded with touchscreens and order off an extensive menu. Once the order is placed it is sent electronically to the kitchen.[91] These types of touchscreens fit under the Point of Sale (POS) systems mentioned in the lead section.

«Gorilla arm»[edit]

Extended use of gestural interfaces without the ability of the user to rest their arm is referred to as «gorilla arm».[92] It can result in fatigue, and even repetitive stress injury when routinely used in a work setting. Certain early pen-based interfaces required the operator to work in this position for much of the workday.[93] Allowing the user to rest their hand or arm on the input device or a frame around it is a solution for this in many contexts. This phenomenon is often cited as an example of movements to be minimized by proper ergonomic design.

Unsupported touchscreens are still fairly common in applications such as ATMs and data kiosks, but are not an issue as the typical user only engages for brief and widely spaced periods.[94]

Fingerprints[edit]

Touchscreens can suffer from the problem of fingerprints on the display. This can be mitigated by the use of materials with optical coatings designed to reduce the visible effects of fingerprint oils. Most modern smartphones have oleophobic coatings, which lessen the amount of oil residue. Another option is to install a matte-finish anti-glare screen protector, which creates a slightly roughened surface that does not easily retain smudges.

Glove touch[edit]

Touchscreens do not work most of the time when the user wears gloves. The thickness of the glove and the material they are made of play a significant role on that and the ability of a touchscreen to pick up a touch.

See also[edit]

  • Dual-touchscreen
  • Pen computing
  • Energy harvesting
  • Flexible keyboard
  • Gestural interface
  • Graphics tablet
  • Light pen
  • List of touch-solution manufacturers
  • Lock screen
  • Tablet computer
  • Touch switch
  • Touchscreen remote control
  • Multi-touch
  • Omnitouch
  • Pointing device gesture
  • Sensacell
  • SixthSense
  • Nintendo DS

References[edit]

  1. ^ Walker, Geoff (August 2012). «A review of technologies for sensing contact location on the surface of a display: Review of touch technologies». Journal of the Society for Information Display. 20 (8): 413–440. doi:10.1002/jsid.100. S2CID 40545665.
  2. ^ «What is a Touch Screen?». www.computerhope.com. Retrieved 2020-09-07.
  3. ^ Allvin, Rhian Evans (2014-09-01). «Technology in the Early Childhood Classroom». YC Young Children. 69 (4): 62. ISSN 1538-6619.
  4. ^ «The first capacitative touch screens at CERN». CERN Courrier. 31 March 2010. Archived from the original on 4 September 2010. Retrieved 2010-05-25.
  5. ^ Bent Stumpe (16 March 1977). «A new principle for x-y touch system» (PDF). CERN. Retrieved 2010-05-25.
  6. ^ Bent Stumpe (6 February 1978). «Experiments to find a manufacturing process for an x-y touch screen» (PDF). CERN. Retrieved 2010-05-25.
  7. ^ Beck, Frank; Stumpe, Bent (May 24, 1973). Two devices for operator interaction in the central control of the new CERN accelerator (Report). CERN. CERN-73-06. Retrieved 2017-09-14.
  8. ^ Johnson, E.A. (1965). «Touch Display — A novel input/output device for computers». Electronics Letters. 1 (8): 219–220. Bibcode:1965ElL…..1..219J. doi:10.1049/el:19650200.
  9. ^ «1965 — The Touchscreen». Malvern Radar and Technology History Society. 2016. Archived from the original on 31 January 2018. Retrieved 24 July 2017.
  10. ^ Johnson, E.A. (1967). «Touch Displays: A Programmed Man-Machine Interface». Ergonomics. 10 (2): 271–277. doi:10.1080/00140136708930868.
  11. ^ Orr, N.W.; Hopkins, V.D. (1968). «The Role of Touch Display in Air Traffic Control». The Controller. 7: 7–9.
  12. ^ Lowe, J. F. (18 November 1974). «Computer creates custom control panel». Design News: 54–55.
  13. ^ Stumpe, Bent; Sutton, Christine (1 June 2010). «CERN touch screen». Symmetry Magazine. A joint Fermilab/SLAC publication. Archived from the original on 2016-11-16. Retrieved 16 November 2016.
  14. ^ «Another of CERN’s many inventions! — CERN Document Server». CERN Document Server. Retrieved 29 July 2015.
  15. ^ a b c Mallebrein, Rainer [in German] (2018-02-18). «Oral History of Rainer Mallebrein» (PDF) (Interview). Interviewed by Steinbach, Günter. Singen am Hohentwiel, Germany: Computer History Museum. CHM Ref: X8517.2018. Archived (PDF) from the original on 2021-01-27. Retrieved 2021-08-23. (18 pages)
  16. ^ a b c Ebner, Susanne (2018-01-24). «Entwickler aus Singen über die Anfänge der Computermaus: «Wir waren der Zeit voraus»» [Singen-based developer about the advent of the computer mouse: «We were ahead of time»]. Leben und Wissen. Südkurier (in German). Konstanz, Germany: Südkurier GmbH. Archived from the original on 2021-03-02. Retrieved 2021-08-22.
  17. ^ F. Ebeling, R. Johnson, R. Goldhor, Infrared light beam x-y position encoder for display devices, US 3775560, granted November 27, 1973.
  18. ^ The H.P. Touch Computer (1983) Archived 2017-08-24 at the Wayback Machine. YouTube (2008-02-19). Retrieved on 2013-08-16.
  19. ^ USPTO. «DISCRIMINATING CONTACT SENSOR». Archived from the original on 19 May 2013. Retrieved 6 April 2013.
  20. ^ Emerson, Lewis (December 13, 2010). ««G. Samuel Hurst — the ‘Tom Edison’ of ORNL», December 14 2010″. G. Samuel Hurst — the ‘Tom Edison’ of ORNL. Retrieved 2010-12-13.[dead link]
  21. ^ Japanese PCs (1984) Archived 2017-07-07 at the Wayback Machine (12:21), Computer Chronicles
  22. ^ «Terebi Oekaki / Sega Graphic Board — Articles — SMS Power!». Archived from the original on 23 July 2015. Retrieved 29 July 2015.
  23. ^ «Software that takes games seriously». New Scientist. Reed Business Information. March 26, 1987. p. 34. Archived from the original on January 31, 2018 – via Google Books.
  24. ^ Technology Trends: 2nd Quarter 1986 Archived 2016-10-15 at the Wayback Machine, Japanese Semiconductor Industry Service — Volume II: Technology & Government
  25. ^ Biferno, M. A., Stanley, D. L. (1983). The Touch-Sensitive Control/Display Unit: A Promising Computer Interface. Technical Paper 831532, Aerospace Congress & Exposition, Long Beach, CA: Society of Automotive Engineers.
  26. ^ «1986, Electronics Developed for Lotus Active Suspension Technology — Generations of GM». History.gmheritagecenter.com. Archived from the original on 2013-06-17. Retrieved 2013-01-07.
  27. ^ Badal, Jaclyne (2008-06-23). «When Design Goes Bad». Online.wsj.com. Archived from the original on 2016-03-16. Retrieved 2013-01-07.
  28. ^ The ViewTouch restaurant system Archived 2009-09-09 at the Wayback Machine by Giselle Bisson
  29. ^ «The World Leader in GNU-Linux Restaurant POS Software». Viewtouch.com. Archived from the original on 2012-07-17. Retrieved 2013-01-07.
  30. ^ «File:Comdex 1986.png». Wikimedia Commons. 2012-09-11. Archived from the original on 2012-12-20. Retrieved 2013-01-07.
  31. ^ Potter, R.; Weldon, L.; Shneiderman, B. (1988). «Improving the accuracy of touch screens: an experimental evaluation of three strategies». Proceedings of the SIGCHI conference on Human factors in computing systems — CHI ’88. Proc. of the Conference on Human Factors in Computing Systems, CHI ’88. Washington, DC. pp. 27–32. doi:10.1145/57167.57171. ISBN 0201142376. Archived from the original on 2015-12-08.
  32. ^ a b Sears, Andrew; Plaisant, Catherine; Shneiderman, Ben (June 1990). «A new era for high-precision touchscreens». In Hartson, R.; Hix, D. (eds.). Advances in Human-Computer Interaction. Vol. 3. Ablex (1992). ISBN 978-0-89391-751-7. Archived from the original on October 9, 2014.
  33. ^ «1991 video of the HCIL touchscreen toggle switches (University of Maryland)». YouTube. Archived from the original on 13 March 2016. Retrieved 3 December 2015.
  34. ^ Apple touch-screen patent war comes to the UK (2011). Event occurs at 1:24 min in video. Archived from the original on 8 December 2015. Retrieved 3 December 2015.
  35. ^ Star7 Demo on YouTube. Retrieved on 2013-08-16.
  36. ^ «The LG KE850: touchable chocolate». Engadget.
  37. ^ «Touch Screen Market to Hit $9B by 2015». CBS News.
  38. ^ «Touch screen gamble: Which technology to use».
  39. ^ «Canalys — the leading global technology market analyst firm».
  40. ^ Travis Fahs (April 21, 2009). «IGN Presents the History of SEGA». IGN. p. 7. Archived from the original on February 4, 2012. Retrieved 2011-04-27.
  41. ^ «Short Course on Projected Capacitance» (PDF).
  42. ^ «What is touch screen? — Definition from WhatIs.com». WhatIs.com. Retrieved 2020-09-07.
  43. ^ Lancet, Yaara. (2012-07-19) What Are The Differences Between Capacitive & Resistive Touchscreens? Archived 2013-03-09 at the Wayback Machine. Makeuseof.com. Retrieved on 2013-08-16.
  44. ^ Vlad Savov. «Nintendo 3DS has resistive touchscreen for backwards compatibility, what’s the Wii U’s excuse?». Engadget. AOL. Archived from the original on 12 November 2015. Retrieved 29 July 2015.
  45. ^ Hong, Chan-Hwa; Shin, Jae-Heon; Ju, Byeong-Kwon; Kim, Kyung-Hyun; Park, Nae-Man; Kim, Bo-Sul; Cheong, Woo-Seok (1 November 2013). «Index-Matched Indium Tin Oxide Electrodes for Capacitive Touch Screen Panel Applications». Journal of Nanoscience and Nanotechnology. 13 (11): 7756–7759. doi:10.1166/jnn.2013.7814. PMID 24245328. S2CID 24281861.
  46. ^ «Fujifilm reinforces the production facilities for its touch-panel sensor film «EXCLEAR»«. FUJIFILM Europe.
  47. ^ «Development of a Thin Double-sided Sensor Film «EXCLEAR» for Touch Panels via Silver Halide Photographic Technology» (PDF). www.fujifilm.com. Retrieved 2019-12-09.
  48. ^ «What’s behind your smartphone screen? This… |». fujifilm-innovation.tumblr.com.
  49. ^ «Environment: [Topics2] Development of Materials That Solve Environmental Issues EXCLEAR thin double-sided sensor film for touch panels | FUJIFILM Holdings». www.fujifilmholdings.com.
  50. ^ Kent, Joel (May 2010). «Touchscreen technology basics & a new development». CMOS Emerging Technologies Conference. CMOS Emerging Technologies Research. 6: 1–13. ISBN 9781927500057.
  51. ^ Ganapati, Priya (5 March 2010). «Finger Fail: Why Most Touchscreens Miss the Point». Wired. Archived from the original on 2014-05-11. Retrieved 9 November 2019.
  52. ^ Andi (2014-01-24). «How noise affects touch screens». West Florida Components. Retrieved 2020-10-24.
  53. ^ «Touch screens and charger noise |». epanorama.net. 2013-03-12.
  54. ^ «Aggressively combat noise in capacitive touch applications». EDN.com. 2013-04-08.
  55. ^ «Please Touch! Explore The Evolving World Of Touchscreen Technology». electronicdesign.com. Archived from the original on 2015-12-13. Retrieved 2009-09-02.
  56. ^ «formula for relationship between plate area and capacitance».
  57. ^ «Touch operated keyboard». Archived from the original on 2018-01-31. Retrieved 2018-01-30.
  58. ^ «Multipoint touchscreen».
  59. ^ «Espacenet — Original document». Worldwide.espacenet.com. 2017-04-26. Retrieved 2018-02-22.
  60. ^ Knowledge base: Multi-touch hardware Archived 2012-02-03 at the Wayback Machine
  61. ^ «Use of RC oscillator in touchscreen».
  62. ^ «Ambiguity caused by multitouch in self capacitance touchscreens» (PDF).
  63. ^ a b «Multitouch using Self Capacitance».
  64. ^ «Self-capacitive touch described on official Sony Developers blog». Archived from the original on 2012-03-14. Retrieved 2012-03-14.
  65. ^ Du, Li (2016). «Comparison of self capacitance and mutual capacitance» (PDF). arXiv:1612.08227. doi:10.1017/S1743921315010388. S2CID 220453196.
  66. ^ «Hybrid self and mutual capacitance touch sensing controllers».
  67. ^ Beyers, Tim (2008-02-13). «Innovation Series: Touchscreen Technology». The Motley Fool. Archived from the original on 2009-03-24. Retrieved 2009-03-16.
  68. ^ «Acoustic Pulse Recognition Touchscreens» (PDF). Elo Touch Systems. 2006: 3. Archived (PDF) from the original on 2011-09-05. Retrieved 2011-09-27.
  69. ^ «Touch Screens in Mobile Devices to Deliver $5 Billion Next Year | Press Release». ABI Research. 2008-09-10. Archived from the original on 2011-07-07. Retrieved 2009-06-22.
  70. ^ «Insights Into PVDF Innovations». Fluorotherm. 17 August 2015. Archived from the original on 15 October 2016.
  71. ^ «New Screen Technology, TapSense, Can Distinguish Between Different Parts Of Your Hand». Archived from the original on October 20, 2011. Retrieved October 19, 2011.
  72. ^ «TapSense: Enhancing Finger Interaction on Touch Surfaces». Archived from the original on 11 January 2012. Retrieved 28 January 2012.
  73. ^ «ANSI/HFES 100-2007 Human Factors Engineering of Computer Workstations». Human Factors & Ergonomics Society. Santa Monica, CA. 2007.
  74. ^ «Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs)–Part 9: Requirements for Non-keyboard Input Devices». International Organization for Standardization. Geneva, Switzerland. 2000.
  75. ^ «iOS Human Interface Guidelines». Apple. Archived from the original on 2014-08-26. Retrieved 2014-08-24.
  76. ^ «Metrics and Grids». Archived from the original on 2014-07-16. Retrieved 2014-08-24.
  77. ^ «Touch interactions for Windows». Microsoft. Archived from the original on 2014-08-26. Retrieved 2014-08-24.
  78. ^ Hoober, Steven (2013-02-18). «Common Misconceptions About Touch». UXmatters. Archived from the original on 2014-08-26. Retrieved 2014-08-24.
  79. ^ Hoober, Steven (2013-11-11). «Design for Fingers and Thumbs Instead of Touch». UXmatters. Archived from the original on 2014-08-26. Retrieved 2014-08-24.
  80. ^ Hoober, Steven; Shank, Patti; Boll, Susanne (2014). «Making mLearning Usable: How We Use Mobile Devices». Santa Rosa, CA.
  81. ^ Henze, Niels; Rukzio, Enrico; Boll, Susanne (2011). «100,000,000 Taps: Analysis and Improvement of Touch Performance in the Large». Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services. New York.
  82. ^ Parhi, Pekka (2006). «Target Size Study for One-Handed Thumb Use on Small Touchscreen Devices». Proceedings of MobileHCI 2006. New York.
  83. ^ Lee, Seungyons; Zhai, Shumin (2009). «The Performance of Touch Screen Soft Buttons». Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: 309. doi:10.1145/1518701.1518750. ISBN 9781605582467. S2CID 2468830.
  84. ^ Bérard, François (2012). «Measuring the Linear and Rotational User Precision in Touch Pointing». Proceedings of the 2012 ACM International Conference on Interactive Tabletops and Surfaces. New York: 183. doi:10.1145/2396636.2396664. ISBN 9781450312097. S2CID 15765730.
  85. ^ Hoober, Steven (2014-09-02). «Insights on Switching, Centering, and Gestures for Touchscreens». UXmatters. Archived from the original on 2014-09-06. Retrieved 2014-08-24.
  86. ^ Hoober, Steven (2013-02-18). «How Do Users Really Hold Mobile Devices?». UXmatters. Archived from the original on 2014-08-26. Retrieved 2014-08-24.
  87. ^ Brasel, S. Adam; Gips, James (2014). «Tablets, touchscreens, and touchpads: How varying touch interfaces trigger psychological ownership and endowment». Journal of Consumer Psychology. 24 (2): 226–233. doi:10.1016/j.jcps.2013.10.003. S2CID 145501566.
  88. ^ Zhu, Ying; Meyer, Jeffrey (September 2017). «Getting in touch with your thinking style: How touchscreens influence purchase». Journal of Retailing and Consumer Services. 38: 51–58. doi:10.1016/j.jretconser.2017.05.006.
  89. ^ a b Hueter, Jackie; Swart, William (February 1998). «An Integrated Labor-Management System for Taco Bell». Interfaces. 28 (1): 75–91. CiteSeerX 10.1.1.565.3872. doi:10.1287/inte.28.1.75. S2CID 18514383.
  90. ^ Baker, Rosie (19 May 2011). «FOOD: McDonald’s explores digital touchscreens». Marketing Week: 4. Gale A264377887.
  91. ^ «A RESTAURANT THAT LETS GUESTS PLACE ORDERS VIA A TOUCHSCREEN TABLE (Touche is said to be the first touchscreen restaurant in India and fifth in the world)». India Business Insight. 31 August 2011. Gale A269135159.
  92. ^ «gorilla arm». Catb.org. Archived from the original on 2012-01-21. Retrieved 2012-01-04.
  93. ^ «Gesture Fatigue ruined light pens forever. Make sure it doesn’t ruin your gesture design». Gesture Design Blog. Archived from the original on 2015-02-13. Retrieved 2014-08-23.
  94. ^ David Pogue (January 3, 2013). «Why Touch Screens Will Not Take Over». Scientific American. 308 (1): 25. doi:10.1038/scientificamerican0113-25. PMID 23342443.

Sources[edit]

  • Shneiderman, B. (1991). «Touch screens now offer compelling uses». IEEE Software. 8 (2): 93–94, 107. doi:10.1109/52.73754. S2CID 14561929.
  • Potter, R.; Weldon, L. & Shneiderman, B. (1988). An experimental evaluation of three strategies. Proc. CHI’88. Washington, DC: ACM Press. pp. 27–32.
  • Sears, A.; Plaisant, C. & Shneiderman, B. (1992). «A new era for high precision touchscreens». In Hartson, R. & Hix, D. (eds.). Advances in Human-Computer Interaction. Vol. 3. Ablex, NJ. pp. 1–33.

External links[edit]


На основании Вашего запроса эти примеры могут содержать грубую лексику.


На основании Вашего запроса эти примеры могут содержать разговорную лексику.

Перевод «Тачскрин» на английский


Тачскрин можно представить как прозрачное стекло, с подключенными к нему сенсорами и шлейфами для соединения с оборудованием обработки информации, будь то телефон, ноутбук, часы или что-то ещё.



The touchscreen can be thought of as a transparent glass, with sensors and loops connected to it for connecting to information processing equipment, whether it be a phone, laptop, watch, or something else.


Перед водителем находится 13-дюймовая цифровая панель приборов, а чуть правее расположился 17-дюймовый цветной тачскрин.



There is a 13-inch digital instrument panel in front of the driver, and a 17-inch color touchscreen is located slightly to the right.


Инфракрасный тачскрин сконструирован из массивов светодиодов и светочувствительных фотоэлементов, расположенных на противоположных сторонах экрана.



The infrared touch screen is constructed from arrays of LEDs and photosensitive photocells located on opposite sides of the screen.


В ходе эксперимента, в котором использовался тачскрин компьютер, голубь очень быстро понял эту идею.



In an experiment using a touch screen computer, a pigeon was easily able to grasp this concept.


Тачскрин получил широкое применение не только в модных дорогостоящих девайсах, но, даже, в относительно недорогих моделях современных телефонов.



Touchscreen has been widely used not only in fashionable expensive devices, but even in relatively inexpensive models of modern phones.


Тачскрин экрана воспринимает 8 одновременных касаний (интересно, почему не 10?



Screen Touchscreen perceives 8 simultaneous touches (interesting, why not 10?


Тачскрин (TouchScreen, сенсорный экран) — это устройство, служащее для ввода информации посредством прикосновений к его поверхности или прочих механических воздействий (надавливания, электрического импульса).



Touchscreen (TouchScreen, sensory screen) is a device used to enter information by touching its surface or other mechanical influences (pressure, electrical impulse).


Тачскрин P-OLED да, емкостный,


На фронтальной стороне будет дисплей квадратной формы, скорее всего с поддержкой тачскрин.



On the front side there will be a square-shaped display, most likely with touchscreen support.


Сверхчувствительный тачскрин позволяет с легкостью управлять устройством, и оно выполняет все требования своего владельца.



The hypersensitive touchscreen makes it easy to control the device, and it fulfills all the requirements of its owner.


Теперь пилоты смогут выводить на эти экраны информацию из приложений EFB используя технологию тачскрин.



Now pilots will be able to display information from EFB applications on these screens using touchscreen technology.


Важную роль в этом играет новая мультимедийная система MBUX с голосовым управлением и 10,25-дюймовым экраном тачскрин.



An important role in this is played by the new MBUX multimedia system with voice control and a 10.25-inch touchscreen.


Superscreen — это портативный тачскрин, который дает любому телефону возможности 10-дюймового HD-планшета.



Superscreen is a portable touchscreen that gives any smartphone the capabilities of a 10-inch HD tablet.


Датчик приближения деактивирует дисплей и тачскрин сенсорный ввод, когда устройство приближается к лицу во время разговора.



A proximity sensor deactivates the display and touchscreen when the device is brought near the face during a call.


На центральной консоли удобно расположен тачскрин мультимедийного устройства, прямо под которым находится удобный блок настроек микроклимата и другие элементы управления системами автомобиля.



On the center console is conveniently located the touchscreen of the multimedia device, directly beneath which is a convenient block of microclimate settings and other controls for car systems.


Подобная технология также привела к созданию гибких экранов; как минимум одна компания надеется превратить кожу в тачскрин, используя датчики и пикопроекторы вместо дисплея.



The technology has also led to the creation of bendable screens, while at least one company is hoping to turn the skin into a touchscreen using sensors and a pico-projector rather than a display.


Нет, она необязательно должна быть видимой; порой на тачскрин воздействуют и совершенно незаметные образования.



No, she does not have to be visible; sometimes on the touchscreen act and totally inconspicuous education.


Мы также должны понимать, что кто-нибудь может воспользоваться дистанционным управлением или будет тыкать жирным пальцем на тачскрин.



We must also be aware that someone may be interacting via a remote control or a fat stubby finger on a touchscreen.


Одной из самых серьёзных поломок, которые могут случиться с смартфоном, это разбитый экран и неисправный тачскрин.



One of the most serious breakdowns that can happen with a smartphone is a broken screen and a broken touchscreen.


Устройство разрабатывалось с целью стать самым простым в управлении летательным аппаратом: для его контроля используется всего два джойстика и один тачскрин.



The device was developed with the goal of becoming the easiest to manage: backpack control using only two joystick and a touchscreen.

Ничего не найдено для этого значения.

Результатов: 81. Точных совпадений: 81. Затраченное время: 103 мс

Documents

Корпоративные решения

Спряжение

Синонимы

Корректор

Справка и о нас

Индекс слова: 1-300, 301-600, 601-900

Индекс выражения: 1-400, 401-800, 801-1200

Индекс фразы: 1-400, 401-800, 801-1200

Понравилась статья? Поделить с друзьями:

Не пропустите и эти статьи:

  • Как пишется тахометр
  • Как пишется таумкрафт на английском
  • Как пишется татьяне александровне
  • Как пишется татушка
  • Как пишется татуировка или тотуировка

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии