{}
набор
набор элементов
A = {3,7,9,14},
B = {9,14,28}
|
такой, что
так что
A = { x | x ∈ , x <0}
A⋂B
пересечение
объекты, принадлежащие множеству A и множеству B
A ⋂ B = {9,14}
A⋃B
союз
объекты, принадлежащие множеству A или множеству B
A ⋃ B = {3,7,9,14,28}
A⊆B
подмножество
A является подмножеством B. множество A включено в набор B.
{9,14,28} ⊆ {9,14,28}
A⊂B
правильное подмножество / строгое подмножество
A является подмножеством B, но A не равно B.
{9,14} ⊂ {9,14,28}
A⊄B
не подмножество
множество A не является подмножеством множества B
{9,66} ⊄ {9,14,28}
A⊇B
суперсет
A является надмножеством B. множество A включает множество B
{9,14,28} ⊇ {9,14,28}
A⊃B
правильный суперсет / строгий суперсет
A является надмножеством B, но B не равно A.
{9,14,28} ⊃ {9,14}
A⊅B
не суперсет
множество A не является надмножеством множества B
{9,14,28} ⊅ {9,66}
2 А
набор мощности
все подмножества A
набор мощности
все подмножества A
А = В
равенство
оба набора имеют одинаковые элементы
A = {3,9,14},
B = {3,9,14},
A = B
А в
дополнять
все объекты, не принадлежащие множеству A
А ‘
дополнять
все объекты, не принадлежащие множеству A
А Б
относительное дополнение
объекты, принадлежащие A, а не B
A = {3,9,14},
B = {1,2,3},
A B = {9,14}
AB
относительное дополнение
объекты, принадлежащие A, а не B
A = {3,9,14},
B = {1,2,3},
A — B = {9,14}
A∆B
симметричная разница
объекты, принадлежащие A или B, но не их пересечение
A = {3,9,14},
B = {1,2,3},
A ∆ B = {1,2,9,14}
A⊖B
симметричная разница
объекты, принадлежащие A или B, но не их пересечение
A = {3,9,14},
B = {1,2,3},
A ⊖ B = {1,2,9,14}
a ∈A
элемент,
принадлежит
установить членство
A = {3,9,14}, 3 ∈ A
x ∉A
не элемент
нет установленного членства
A = {3,9,14}, 1 ∉ A
( а , б )
упорядоченная пара
сборник из 2-х элементов
A × B
декартово произведение
множество всех упорядоченных пар из A и B
| A |
мощность
количество элементов множества A
A = {3,9,14}, | A | = 3
#A
мощность
количество элементов множества A
A = {3,9,14}, # A = 3
|
вертикальная полоса
такой, что
А = {х | 3 <х <14}
ℵ 0
алеф-нуль
бесконечная мощность множества натуральных чисел
ℵ 1
алеф-он
мощность множества счетных порядковых чисел
Ø
пустой набор
Ø = {}
A = Ø
универсальный набор
набор всех возможных значений
ℕ 0
набор натуральных / целых чисел (с нулем)
0 = {0,1,2,3,4, …}
0 ∈ 0
ℕ 1
набор натуральных / целых чисел (без нуля)
1 = {1,2,3,4,5, …}
6 ∈ 1
ℤ
набор целых чисел
= {…- 3, -2, -1,0,1,2,3, …}
-6 ∈
ℚ
набор рациональных чисел
= { x | x = a / b , a , b ∈
и b ≠ 0}
2/6 ∈
ℝ
набор реальных чисел
= { x | -∞ < х <∞}
6.343434 ∈
ℂ
набор комплексных чисел
= { z | z = a + bi , -∞ < a <∞, -∞ < b <∞}
6 + 2 i ∈
Из большого количества разнообразных множеств особо интересными и важными являются числовые множества, т.е. те множества, элементами которых служат числа. Очевидно, что для работы с числовыми множествами необходимо иметь навык записи их, а также изображения их на координатной прямой.
Запись числовых множеств
Общепринятым обозначением любых множеств являются заглавные буквы латиницы. Числовые множества – не исключение. К примеру, мы можем говорить о числовых множествах B, F или S и т.п. Однако есть также общепринятая маркировка числовых множеств в зависимости от входящих в него элементов:
N – множество всех натуральных чисел; Z – множество целых чисел; Q – множество рациональных чисел; J – множество иррациональных чисел; R – множество действительных чисел; C – множество комплексных чисел.
Становится понятным, что обозначение, например, множества, состоящего из двух чисел: -3, 8 буквой J может ввести в заблуждение, поскольку этой буквой маркируется множество иррациональных чисел. Поэтому для обозначения множества -3, 8 более подходящим будет использование какой-то нейтральной буквы: A или B, например.
Напомним также следующие обозначения:
- ∅ – пустое множество или множество, не имеющее составных элементов;
- ∈ или ∉ — знак принадлежности или непринадлежности элемента множеству. Например, запись 5 ∈ N обозначает, что число 5 является частью множества всех натуральных чисел. Запись -7,1 ∈ Z отражает тот факт, что число -7,1 не является элементом множества Z, т.к. Z– множество целых чисел;
- знаки принадлежности множества множеству:
⊂ или ⊃ — знаки «включено» или «включает» соответственно. Например, запись A⊂Z означает, что все элементы множества А входят в множество Z, т.е. числовое множество A включено в множество Z. Или наоборот, запись Z⊃A пояснит, что множество всех целых чисел Z включает множество A.
⊆ или ⊇ — знаки так называемого нестрогого включения. Означают «включено или совпадает» и «включает или совпадает» соответственно.
Рассмотрим теперь схему описания числовых множеств на примере основных стандартных случаев, наиболее часто используемых на практике.
Первыми рассмотрим числовые множества, содержащие конечное и небольшое количество элементов. Описание подобного множества удобно составлять, просто перечисляя все его элементы. Элементы в виде чисел записываются, разделяясь запятой, и заключаются в фигурные скобки (что соответствует общим правилам описания множеств). К примеру, множество из чисел 8, -17, 0,15 запишем как {8, -17, 0,15}.
Случается, что количество элементов множества достаточно велико, но все они подчиняются определенной закономерности: тогда в описании множества используют многоточие. К примеру, множество всех четных чисел от 2 до 88 запишем как: {2, 4, 6, 8, …, 88}.
Теперь поговорим об описании числовых множеств, в которых количество элементов бесконечно. Иногда их описывают при помощи того же многоточия. Например, множество всех натуральных чисел запишем так: N = {1, 2, 3, …}.
Также возможно записать числовое множество с бесконечным количеством элементов при помощи указания свойств его элементов. Применяют при этом обозначение {х| свойства}. К примеру, {n| 8·n + 3, n∈N} определяет множество натуральных чисел, которые при делении на 8 дадут остаток 3. Это же множество возможно записать как: {11, 19, 27, …}.
В частных случаях числовые множества с бесконечным количеством элементов – это общеизвестные множества N, Z, R и т.д., либо числовые промежутки. Но в основном числовые множества представляют собой объединение составляющих их числовых промежутков и числовых множеств с конечным количеством элементов (о них мы говорили в самом начале статьи).
Рассмотрим на примере. Допустим, составляющими некого числового множества являются числа -15, -8, -7,34, 0, а также все числа отрезка [-6, -1,2] и числа открытого числового луча (6, +∞). В соответствии с определением объединения множеств заданное числовое множество запишем как: {-15, -8, -7,34}∪[-6, -1,2]∪{0}∪(6, +∞). Подобная запись фактически означает множество, включающее в себя все элементы множеств {-15, -8, -7,34, 0}, [-6, -1,2] и (6, +∞).
Таким же образом, объединяя различные числовые промежутки и множества отдельных чисел, возможно дать описание любому числовому множеству, состоящему из действительных чисел. На основе сказанного становится понятно, для чего вводятся различные виды числовых промежутков, такие как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч. Все эти виды промежутков совместно с обозначениями множеств отдельных чисел дают возможность через их объединение описать любое числовое множество.
Необходимо также обратить внимание на то, что отдельные числа и числовые промежутки при записи множества могут быть упорядочены по возрастанию. В общем, это не является обязательным требованием, однако подобное упорядочивание позволяет представить числовое множество проще, а также верно отобразить его на координатной прямой. Также стоит уточнить, что в таких записях не применяют числовые промежутки с общими элементами, поскольку эти записи возможно заменить объединением числовых промежутков, исключив общие элементы. К примеру, объединением числовых множеств с общими элементами [-15, 0] и (-6,4) будет полуинтервал [-15, 4). То же имеет отношение и к объединению числовых промежутков с одинаковыми граничными числами. Например, объединение (4, 7]∪(7, 9] является множеством (4, 9]. Этот пункт подробно будет рассмотрен в теме нахождения пересечения и объединения числовых множеств.
Изображение числовых множеств на координатной прямой
В практических примерах удобно использовать геометрическое толкование числовых множеств – их изображение на координатной прямой. К примеру, такой способ поможет при решении неравенств, в которых нужно учесть ОДЗ – когда нужно отобразить числовые множества, чтобы определить их объединение и/или пересечение.
Мы знаем, что между точками координатной прямой и действительными числами имеется однозначное соответствие: вся координатная прямая есть геометрическая модель множества всех действительных чисел R. Следовательно, для изображения множества всех действительных чисел начертим координатную прямую и нанесем штриховку на всем ее протяжении:
Зачастую и не указывают начало отсчета и единичный отрезок:
Рассмотрим изображение числовых множеств, состоящих из конечного количества отдельных чисел. К примеру, отобразим числовое множество {-2, -0,5, 1,2}. Геометрической моделью заданного множества станут три точки координатной прямой с соответствующими координатами:
В большинстве случаев возможно не соблюдать абсолютную точность чертежа: вполне достаточно схематичного изображения без соблюдения масштаба, но с сохранением взаимного расположения точек относительно друг друга, т.е. любая точка с бОльшей координатой должна быть правее точки с меньшей. С учётом сказанного уже имеющийся чертеж может выглядеть так:
Отдельно из возможных числовых множеств выделяют числовые промежутки интервалы, полуинтервалы, лучи и пр.)
Теперь рассмотрим принцип изображения числовых множеств, являющихся объединением нескольких числовых промежутков и множеств, состоящих их отдельных чисел. В этом нет никакой сложности: согласно определению объединения на координатной прямой необходимо отобразить все составляющие множества заданного числового множества. Например, создадим иллюстрацию числового множества (-∞, -15)∪{-10}∪[-3, 1)∪{log25, 5}∪(17, +∞).
Также довольно распространены случаи, когда числовое множество, которое необходимо изобразить, включает в себя все множество действительных чисел кроме одной или нескольких точек. Подобные множества часто задаются условиями вроде х ≠ 5 или х ≠ -1 и т.п. В таких случаях множества в своей геометрической модели являются всей координатной прямой за исключением заданных точек. Общепринято говорить, что эти точки необходимо «выколоть» из координатной прямой. Изображается выколотая точка кружочком с пустым центром. Чтобы подкрепить сказанное практическим примером, отобразим на координатной прямой множество с заданным условием х ≠ -2 и х ≠ 3:
Информация, приведенная в данной статье, призвана помочь получить навык видеть запись и изображение числовых множеств так же легко, как и отдельных числовых промежутков. В идеале записанное числовое множество сразу должно представляться в виде геометрического образа на координатной прямой. И наоборот: по изображению должно с легкостью формироваться соответствующее числовое множество через объединение числовых промежутков и множеств, являющихся отдельными числами.
Что такое множество в математике и как оно обозначается
Множество – это количество предметов или чисел, обладающих общими свойствами.
Данное определение подходит к любой совокупности с одинаковыми признаками, независимо оттого, сколько предметов в нее входит: толпа людей, стог сена, звезды в небе.
В математике изучаемое понятие обозначается заглавными латинскими буквами, например: А, С, Z, N, Q, A1, A2 и т. д.
Объекты, составляющие группу, называются элементами множества и записываются строчными латинскими буквами: a, b, c, d, x, y, a1, a2 и т. д.
Границы совокупности обозначаются фигурными скобками { }.
Пример:
-
А = {а, в, с, у} – А состоит из четырех элементов.
-
Записать совокупность Z согласных букв в слове «калькулятор»:
Z = {к, л, т, р}, повторяющиеся согласные записываются один раз. Z состоит из четырех элементов.
Принадлежность элементов множеству обозначается знаком – Є.
Пример: N = {a, b, c, y}, а Є N – элемент «а» принадлежит N.
Выделяют три вида множеств:
-
конечные — совокупности, имеющие максимальный и минимальный предел (например, отрезок);
-
бесконечные — не являющиеся конечными (например, числовые);
-
пустые (обозначаются Ø) – не имеющие элементов.
Если две разные совокупности содержат одинаковые элементы, то одна из них (со всеми своими элементами) является подмножеством другой и обозначается знаком — ⊆.
Пример: А = {а, в, с, у} и В = {а, в, с, е, к} – все элементы А являются элементами совокупности В, следовательно А ⊆ В.
Если множества состоят из одинаковых элементов, их называют равными.
Пример: А = {23, 29, 48} и В = {23, 29, 48}, тогда А = В.
В математике выделяют несколько числовых совокупностей. Рассмотрим их подробнее.
Множество натуральных чисел
К совокупности натуральных чисел (N) относятся цифры, используемые при счете — от 1 до бесконечности.
Натуральные числа используют для исчисления порядка предметов. Обязательное условие данной числовой группы — каждое следующее число больше предыдущего на единицу.
N = {9, 11, 13, 15……}.
Относится ли ноль к натуральным числам? Это до сих пор открытый вопрос для математиков всего мира.
Множество целых чисел
Совокупность целых чисел (Z) включает в себя положительные натуральные и отрицательные числа, а также ноль:
Z = {-112, -60, -25, 0, 36, 58, 256}.
Следовательно, N — подмножество Z, что можно записать как N ⊆ Z. Любое натуральное число можно назвать так же и целым.
Множество рациональных чисел
Совокупность рациональных чисел (Q) состоит из дробей (обыкновенных и десятичных), целых и смешанных чисел:
Q={-½; 0; ½, 5; 10}.
Любое рациональное число можно представить в виде дроби, у которой числителем служит любое целое число, а знаменателем – натуральное:
5 = 5/1 = 10/2 = 25/5;
0,45 = 45/100 = 9/20.
Следовательно, N и Z являются подмножествами Q.
Операции над множествами
Точно так же, как и все математические объекты, множества можно складывать и вычитать, то есть совершать операции.
Если две группы образуют третью, содержащую элементы исходных совокупностей – это называется суммой (объединением) множеств и обозначается знаком ∪.
Пример: В = {1, 6, 17} и С = {2, 13, 18}, В ∪ С= {1, 2, 6, 13, 17, 18}.
Если две группы совокупностей образуют третью, состоящую только из общих элементов заданных составляющих, это называется произведением (пересечением) множеств, обозначается значком ∩.
Пример: В = {36, 42, 53, 64} и С = {32, 42, 55, 66}, В ∩ С = {42}.
Если две совокупности образуют третью, включающую элементы одной из заданных групп и не содержащую элементы второй, получается разность (дополнение) совокупностей, обозначается значком /.
Пример: В = {12, 14, 16, 18} и С = {13, 14, 15, 17}, В / С = {14}.
В случае, когда В / С = С / В, получается симметричная разность и обозначается значком Δ.
Для «чайников» или кому трудно даётся данная тема операции с совокупностями можно отобразить с помощью диаграмм Венна:
Объединение
Пересечение
Дополнение
С помощью данных диаграмм можно разобраться с законами де Моргана по поводу логической интерпретации операций над множествами.
Свойства операций над множествами
Операции над множествами обладают свойствами, аналогичными правилу свойств сложения, умножения и вычитания чисел:
Коммутативность – переместительные законы:
-
умножения S ∩ D = D ∩ S;
-
сложения S ∪ D = D ∪ S.
Ассоциативность – сочетательные законы:
-
умножения (S ∩ F) ∩ G = S ∩ (F ∩ G);
-
сложения (S ∪ F) ∪ G = S ∪ (F ∪ G).
Дистрибутивность – законы распределения:
-
умножения относительно вычитания S ∩ (F – G) = (S ∩ F) – (S ∩ G);
-
умножения относительно сложения G ∩ (S ∪ F) = (G ∩ S) ∪ (G ∩ F);
-
сложения относительно умножения G ∪ (S ∩ F) = (G ∪ S) ∩ (G ∪ F).
Транзитивность — законы включения:
-
если S ⊆ Fи F ⊆ J, то S ⊆ J;
-
если S ⊆ F и F ⊆ S, то S = F.
Идемпотентность объединения и пересечения:
-
S ∩ S = S;
-
S ∪ S = S.
О других свойствах операций можно узнать из картинки:
Счетные и несчетные множества
Если между элементами двух групп можно установить взаимное немногозначное соответствие, то эти группы чисел равномощны, при условии равного количества элементов.
Мощность данной математической единицы равна количеству элементов в ней. Например, множество всех нечетных положительных чисел равномощно группе всех четных чисел больше ста.
В случае, когда бесконечное множество равномощно натуральному ряду чисел, оно называется счетным, а если оно не равномощно — несчетным. Другими словами, счетная единица — это совокупность, которую мы можем представить в виде последовательности чисел по порядковым номерам.
Но не все группы действительных чисел счетные. Примером несчетной группы предметов является бесконечная десятичная дробь.
Теория множеств — достаточно широкая тема, которая требует глубокого изучения. Она затрагивает начальный курс математики, изучается в среднем звене школьной программы по алгебре. Высшая математика, математический анализ, логика – рассматривают законы, теоремы, аксиомы множеств, на которых основаны фундаментальные знания науки.
Множество — одно из наиболее важных понятий математики. На этом уроке мы расскажем, что это такое, разберём, что такое элементы множества, конечные и бесконечные множества и другие термины, связанные с понятием множества.
Когда мы говорим о множестве, мы подразумеваем набор связанных друг с другом объектов. Такие объекты называют элементами этого множества.
И если твой класс – это множество, тогда ученики класса – элементы множества.
Для записи множества используют фигурные скобки. Попробуем записать множество цветов радуги:
${$ Красный, оранжевый, желтый, зелёный, голубой, синий, фиолетовый $}$
Конечные и бесконечные множества. Обозначения множеств
Множества могут быть конечными и бесконечными. Например, множество парт в классе, множество пальцев на руке, множество стран мира – конечные, а множество натуральных чисел, множество прямоугольников – бесконечные множества.
Если элементами множества являются числа, то такое множество мы называем числовым.
Например, ${1,3,5,7,9}$ – множество нечётных чисел, ${1,2,3,4,5}$ – множество натуральных чисел, меньших числа $6$.
Все элементы множества должны отличаться друг от друга. В числовом множестве не может быть повторяющихся чисел.
Чтобы множества было легко отличить друг от друга, их обозначают прописными буквами латинского алфавита: $$A={1,2,3,4,5}$$
Принадлежность к множеству. Пустое множество
Каждое из чисел $1, 2, 3, 4, 5$ принадлежит множеству $A$. Слово «принадлежит» заменяют знаком $in$. Выглядит это так: $1 in A$ (число $1$ принадлежит множеству $A$).
Другие числа ему не принадлежат. Вместо слов «не принадлежит» используют знак $notin$. Записать можно так: $6 notin А$ (число $6$ не принадлежит множеству $А$).
Множество натуральных чисел $M$, меньших числа $2$, состоит всего из одного элемента: $$M={1}$$
А множество натуральных чисел $N$, меньших числа $1$, не содержит ни одного элемента.
Множество, в котором не содержится ни одного элемента, называется пустым множеством и обозначают знаком $varnothing$.
Множество $N$ – пустое. $$N=varnothing$$
Объединение и пересечение множеств
Рассмотрим множество учеников класса. Пять учеников ходят в шахматный кружок, а восемь учеников занимаются футболом, при этом в классе всего десять учеников. Как же так получилось? Просто трое ходят и на шахматы, и на футбол.
Обозначим множество учеников, которые ходят в шахматный кружок, буквой $A$, а множество учеников, занимающихся футболом, буквой $B$
Тогда множество всех учеников класса – объединение множеств $A$ и $B$
А множество учеников, которые ходят и на шахматы, и на футбол – общая часть (пересечение) множеств $A$ и $B$
Чтобы обозначить объединение множеств, в математике используют знак $cup$: $$A cup B$$
Для обозначения общей части (пересечения) множеств используют знак $cap$: $$A cap B$$
Пример. Объединение и пересечение двух числовых множеств
Давай рассмотрим два множества:
$А={22,23,24,25,26}$
$B={21,23,25,27}$
И вместе попробуем найти $A cup B$ и $A cap B$.
Для начала запишем объединение этих множеств, то есть все числа, которые входят в эти множества: $$A cup B={21,22,23,24,25,26,27}$$
Обрати внимание, что даже если число есть одновременно в двух множествах, как, например, 23, мы записываем его только один раз, так как в множестве не должно быть одинаковых элементов.
Теперь определим их пересечение (общую часть): $$A cap B={23,25}$$
Подмножество
Посмотри на рисунок. Какие множества на нем ты видишь?
Давай назовём множество треугольников буквой $A$: $$A={m,n,p}$$
A множество прямоугольников буквой $B$: $$B={k,o}$$
Тогда множество $A cup B$ – множество всех фигур на картинке, то есть $$A cup B={m,n,p,k,o}$$
Теперь обозначим множество зелёных фигур буквой $C$: $$C={m,n,o}$$
Что представляет собой множество $Acap C$?
$Acap C$ – множество зелёных треугольников $D$, то есть $D={m,n}$
Обозначим буквой $E$ множество голубых фигур: $$E={k}$$ Давай определим, что является множеством пересечения $Acap E$? У множеств $A$ (треугольники) и $E$ (голубые фигуры) нет общих элементов, а значит они не пересекаются. $$Acap E=varnothing$$
Множество зелёных треугольников $D$ является частью множества всех треугольников $A$. Можно записать так:
$D subset A$
(здесь $subset$ – знак включения)
В таком случае говорят, что множество $D$ – подмножество множества $A$.
Если одно множество является частью другого множества, то его называют подмножеством.
Принято считать, что пустое множество является подмножеством любого множества:$$varnothingsubset A$$
А также само множество является своим подмножеством: $$Asubset A$$
Что такое множество в математике и как оно обозначается
Множество – это количество предметов или чисел, обладающих общими свойствами.
Данное определение подходит к любой совокупности с одинаковыми признаками, независимо оттого, сколько предметов в нее входит: толпа людей, стог сена, звезды в небе.
В математике изучаемое понятие обозначается заглавными латинскими буквами, например: А, С, Z, N, Q, A1, A2 и т. д.
Объекты, составляющие группу, называются элементами множества и записываются строчными латинскими буквами: a, b, c, d, x, y, a1, a2 и т. д.
Границы совокупности обозначаются фигурными скобками { }.
Пример:
-
А = {а, в, с, у} – А состоит из четырех элементов.
-
Записать совокупность Z согласных букв в слове «калькулятор»:
Z = {к, л, т, р}, повторяющиеся согласные записываются один раз. Z состоит из четырех элементов.
Принадлежность элементов множеству обозначается знаком – Є.
Пример: N = {a, b, c, y}, а Є N – элемент «а» принадлежит N.
Выделяют три вида множеств:
-
конечные — совокупности, имеющие максимальный и минимальный предел (например, отрезок);
-
бесконечные — не являющиеся конечными (например, числовые);
-
пустые (обозначаются Ø) – не имеющие элементов.
Если две разные совокупности содержат одинаковые элементы, то одна из них (со всеми своими элементами) является подмножеством другой и обозначается знаком — ⊆.
Пример: А = {а, в, с, у} и В = {а, в, с, е, к} – все элементы А являются элементами совокупности В, следовательно А ⊆ В.
Если множества состоят из одинаковых элементов, их называют равными.
Пример: А = {23, 29, 48} и В = {23, 29, 48}, тогда А = В.
В математике выделяют несколько числовых совокупностей. Рассмотрим их подробнее.
Множество натуральных чисел
К совокупности натуральных чисел (N) относятся цифры, используемые при счете — от 1 до бесконечности.
Натуральные числа используют для исчисления порядка предметов. Обязательное условие данной числовой группы — каждое следующее число больше предыдущего на единицу.
N = {9, 11, 13, 15……}.
Относится ли ноль к натуральным числам? Это до сих пор открытый вопрос для математиков всего мира.
Множество целых чисел
Совокупность целых чисел (Z) включает в себя положительные натуральные и отрицательные числа, а также ноль:
Z = {-112, -60, -25, 0, 36, 58, 256}.
Следовательно, N — подмножество Z, что можно записать как N ⊆ Z. Любое натуральное число можно назвать так же и целым.
Множество рациональных чисел
Совокупность рациональных чисел (Q) состоит из дробей (обыкновенных и десятичных), целых и смешанных чисел:
Q={-½; 0; ½, 5; 10}.
Любое рациональное число можно представить в виде дроби, у которой числителем служит любое целое число, а знаменателем – натуральное:
5 = 5/1 = 10/2 = 25/5;
0,45 = 45/100 = 9/20.
Следовательно, N и Z являются подмножествами Q.
Операции над множествами
Точно так же, как и все математические объекты, множества можно складывать и вычитать, то есть совершать операции.
Если две группы образуют третью, содержащую элементы исходных совокупностей – это называется суммой (объединением) множеств и обозначается знаком ∪.
Пример: В = {1, 6, 17} и С = {2, 13, 18}, В ∪ С= {1, 2, 6, 13, 17, 18}.
Если две группы совокупностей образуют третью, состоящую только из общих элементов заданных составляющих, это называется произведением (пересечением) множеств, обозначается значком ∩.
Пример: В = {36, 42, 53, 64} и С = {32, 42, 55, 66}, В ∩ С = {42}.
Если две совокупности образуют третью, включающую элементы одной из заданных групп и не содержащую элементы второй, получается разность (дополнение) совокупностей, обозначается значком /.
Пример: В = {12, 14, 16, 18} и С = {13, 14, 15, 17}, В / С = {14}.
В случае, когда В / С = С / В, получается симметричная разность и обозначается значком Δ.
Для «чайников» или кому трудно даётся данная тема операции с совокупностями можно отобразить с помощью диаграмм Венна:
Объединение
Пересечение
Дополнение
С помощью данных диаграмм можно разобраться с законами де Моргана по поводу логической интерпретации операций над множествами.
Свойства операций над множествами
Операции над множествами обладают свойствами, аналогичными правилу свойств сложения, умножения и вычитания чисел:
Коммутативность – переместительные законы:
-
умножения S ∩ D = D ∩ S;
-
сложения S ∪ D = D ∪ S.
Ассоциативность – сочетательные законы:
-
умножения (S ∩ F) ∩ G = S ∩ (F ∩ G);
-
сложения (S ∪ F) ∪ G = S ∪ (F ∪ G).
Дистрибутивность – законы распределения:
-
умножения относительно вычитания S ∩ (F – G) = (S ∩ F) – (S ∩ G);
-
умножения относительно сложения G ∩ (S ∪ F) = (G ∩ S) ∪ (G ∩ F);
-
сложения относительно умножения G ∪ (S ∩ F) = (G ∪ S) ∩ (G ∪ F).
Транзитивность — законы включения:
-
если S ⊆ Fи F ⊆ J, то S ⊆ J;
-
если S ⊆ F и F ⊆ S, то S = F.
Идемпотентность объединения и пересечения:
-
S ∩ S = S;
-
S ∪ S = S.
О других свойствах операций можно узнать из картинки:
Счетные и несчетные множества
Если между элементами двух групп можно установить взаимное немногозначное соответствие, то эти группы чисел равномощны, при условии равного количества элементов.
Мощность данной математической единицы равна количеству элементов в ней. Например, множество всех нечетных положительных чисел равномощно группе всех четных чисел больше ста.
В случае, когда бесконечное множество равномощно натуральному ряду чисел, оно называется счетным, а если оно не равномощно — несчетным. Другими словами, счетная единица — это совокупность, которую мы можем представить в виде последовательности чисел по порядковым номерам.
Но не все группы действительных чисел счетные. Примером несчетной группы предметов является бесконечная десятичная дробь.
Теория множеств — достаточно широкая тема, которая требует глубокого изучения. Она затрагивает начальный курс математики, изучается в среднем звене школьной программы по алгебре. Высшая математика, математический анализ, логика – рассматривают законы, теоремы, аксиомы множеств, на которых основаны фундаментальные знания науки.
Множеством называют математическую единицу, которая подчиняется определенным правилам и законам. Оно обладает различными функциями и свойствами. Если элементами в нем являются числа, то речь идет о числовом множестве. Множества чисел могут быть конечными и бесконечными. Для их обозначения применяются большие буквы A, В…., элементы множеств обозначаются маленькими буквами, такими как x, y, z,….
Что такое множество чисел
Математический термин «множество» можно охарактеризовать как отдельную совокупность, набор или объединение. Его элементами в теории могут быть различные объекты произвольной природы. К примеру, термин множество можно применить к большому количеству книг в библиотеке, товаров на полках магазина, студентов университета и т.д. В математике используются такие понятия, как множество точек отрезка заданной длины или множество парных чисел.
Для их математического обозначения используется определенный метод. В случае, когда какой-то элемент [x] принадлежит множеству A, тогда, тогда следует записывать [x in(A)], если же ситуация обратная и элемент [y] не принадлежит множеству A, то правильно будет записать [y notin(A)] или [y bar{in}(A)].
Если в множестве нет ни одного элемента, то его принято называть пустым множеством. Оно обозначается [phi].
Для того, чтобы понять суть числовых множеств, рассмотрим несколько важных характеристик:
- Два отдельных множества A и B будут называть равными и обозначаться A=B в том случае, если составляющие их элементы полностью идентичные.
- Множество A будет называться подмножным множеством B в случае, когда каждый из элементов множества A является элементом второго множества B. В этой случае используются следующее обозначение [A subset(B)]. Оно читается как A содержится в B, либо в B находится A.Очевидным является тот факт, что абсолютно в любое множество входит пустое множество [emptyset subset A]. Приведем пример. Если в состав множества A входят элементы 1, 2, 3, 4, 5, 6, 7, 8, 9, то оно записывается в виде: A={1, 2, 3, 4, 5, 6, 7, 8, 9}, а в B={2,3 ,5 ,7,9} тогда [B subset(A)].
- Объединением множеств называют случаи, когда множества элементов C, принадлежащих множеству A либо множеству B, или одновременно A и B. Обозначается объединение множеств следующим образом: [C=cup(B)].
- Пересечением множеств A и B в математике называют множества элементов C, принадлежащих сразу двум множествам A и B. Обозначается пересечение так: [C=A cap(B)].
В случае, если A и B — это два множества точек, которые принадлежат двум геометрическим фигурам соответственно, тогда варианты их объединения будут выглядеть следующим образом:
Если произойдет пересечение множеств A и B, то выглядеть это будет так:
Разницей множеств A и B принято называть отдельное множество C = A | B, которое содержит все элементы A, которые не являются элементами, принадлежащими множеству B.
Нет времени решать самому?
Наши эксперты помогут!
Виды чисел
В математике все числа разделяются на 7 разных видов:
- натуральные – N;
- натуральные, включающие нуль – N_{0};
- целые – Z;
- целые отрицательные – Z{-};
- целые положительные – Z{+};
- иррациональные;
- рациональные – Q;
- комплексные – C;
- действительные – R.
Рассмотрим более подробно каждый из перечисленных видов чисел:
Основным отличием натуральных чисел является то, что они применяются при перечислении различных предметов или естественном счете. Проще говоря, при нумерации – «первый», «второй», «третий», «четвертый» и т.п. Множество натуральных чисел описывается следующим образом: N={1,2,3,4,5, ….}.
Натуральными числами, включающими нуль обозначаются определенные количества каких-либо предметов: N={0,1,2,3,4,5…}.
Целыми называют числа, входящие в числа с отрицательными и положительными знаками:
обозначение целых отрицательных чисел выглядит следующим образом: Z^{- }и пишется Z{-}=N={…,-5,-4,-3,-2,-1};
целые положительные числа в свою очередь обозначаются Z^{+} и записывается Z{+}=N={1,2,3,4,5…}.
[begin{gathered}
Z=Z^{{-}} cup{O} cupleft{Z^{{+}}right}= \
{ldots-5,-4,-3,-2,-1,0,1,2,3,4,5 ldots}
end{gathered}]
Иррациональными называют вещественные числа, которые на являются рациональными и не могут никогда представляться в виде десятичных дробей.
Рациональными называют те числа, которые можно представить в виде обыкновенной дроби, имеющей вид m/n, где m и n — это целые числа, а [n neq{0}]. Для обозначения рациональных чисел в математике используется большая буква Q.
[Q=left{x mid x=frac{m}{n}, m in{Z}, n in{Z}, n neq{O}right}]
При переводе в десятичную дробь каждое рациональное число может представляться в виде бесконечной или конечной дроби.
Комплексными принято называть числа, в которых содержится мнимая единица i.
[C={mathrm{x}+i y / mathrm{x} in{R} u y in{R}}]
Действительные числа также называют вещественными. В них объединяются два вида чисел: рациональные (R) и иррациональные.
Примеры задач по определению множества чисел
Примеры
Необходимо записать множество D
при условии, что [D=A cup{B}], при этом [A={4,6,8,10,12},
B={6,9,12}].
Решение:
Исходя из условия [D=A cup{B}] можно сделать вывод, что это объединение множеств A и B.
Значит в множество D должны быть включены все элементы, которые присутствуют в обоих множествах
A и B. [D={4,6,8,9,10,12}].
Ответ: В множество D входят все элементы, принадлежащие двум множествам A и B.
Все студенты на курсе занимаются изучением разных иностранных языков. При этом английский язык изучают 90
студентов, а немецкий – 95 человек. Французский язык выбрали для изучения 93 человека, а одновременно
английский и немецкий – 35 студентов. 10 человек изучают все языки без исключения. Нужно узнать, сколько
студентов занимаются изучением немецкого и французского языков, если по списку на курсе
Решение
Решение задачи следует начать с введения некоторых обозначений, которые будут являться примерами множества
чисел.
A – множество студентов, которые проходят обучение на данном курсе;
A_{1} – множество студентов, изучающих исключительно английский язык;
A_{2} – множество студентов, специализирующихся на изучении немецкого языка;
A_{3} – множество студентов, которые изучают только французский;
A_{12} – множество человек, изучающих два языка (английский и немецкий);
A_{13} – множество человек, которые учат английский и французский языки;
A_{23} – множество студентов, изучающих все языки на курсе.
|B| — количество всех элементов, относящихся к множеству B.
Согласно условиям задачи, получаем выражение:
[|A|=185,left|A_{{1}}right|=90,left|A_{{3}}right|=93,left|A_{{12}}right|=35,left|A_{{23}}right|=31,left|A_{{23}}right|=x]
Далее необходимо найти x – количество человек на курсе, которые занимаются изучением французского и
немецкого
языка. Учитывая вышеописанные обозначения, приходим к следующему результату:
[A_{{12}}=A_{{1}} cupleft{A_{{2}}right}, A_{{13}}=A_{{1}} cupleft{A_{{3}}right},
A_{{23}}=\A_{{2}} cupleft{A_{{3}}right}, A_{{123}}=A_{{1}} cupleft{A_{2}right}
cupleft{A_{{3}}right}]
Применяя методы включения и исключения, приходим к выводу, что:
[|A|=left|A_{{1}}+right| A_{{2}} mid+\left|A_{{3}}-right| A_{{1}}
cupleft{A_{{2}}right}|-| A_{{1}} cupleft{A_{{3}}right}-mid
A_{{2}}\left.cupleft{A_{{3}}right}-left|A_{{1}} cupleft{A_{{2}}right} cupright|
A_{{3}}right}=\left|A_{{1}}right|+left|A_{{2}}right|+left|A_{{3}}right|-left|A_{{12}}right|-left|A_{{13}}right|-\left|A_{{23}}+A_{{123}}right|]
[185=90+95+93-35-31-x+10\185=222-x\x=37]
Ответ: 37 студентов на курсе изучают одновременно немецкий и французский языки.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- 8-11 класс: Умскул, Годограф, Знанио.
- Английский: Инглекс, Puzzle, Novakid.
- Взрослым: Skillbox, Нетология, Geekbrains, Яндекс, Otus, SkillFactory.
Как пишется: «множество» или «множества»?
множество вариантов
из множества вариантов
математические множества
множества вариантов
множиство
множиства
множезтво
множезтва
множесдво
множесдва
Правила
Правильными являются два варианта написания лексической единицы. Выбор зависит от формы слова. Если перед нами именительный или винительный падеж единственного числа, пишем в конце гласную «о»: «множество». Когда контекст требует употребления формы множественного числа или родительного падежа единственного числа, пишем «а»: «множества».
Кроме того, существительное пишут с буквой «е» во втором слоге и согласной «с». Разберём слово по составу для ясности: множ – корень, еств – суффикс, о – окончание. Суффикс «-еств-» служит для образования существительных со значением объединения лиц. Проанализируем примеры: юношество, землячество, содружество.
Значение слова
Множество – совокупность элементов, объединяемых по какому-либо признаку (в математике); очень большое количество, число чего-нибудь.
Множества – форма множественного числа или родительного падежа единственного числа существительного «множество».
Примеры
- В истории есть множество примеров, когда могущественные государства проигрывали в войне.
- Вам следует выбрать только один из множества вариантов.
- Сегодня мы узнаем, что представляют собой математические множества.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- 8-11 класс: Умскул, Годограф, Знанио.
- Английский: Инглекс, Puzzle, Novakid.
- Взрослым: Skillbox, Нетология, Geekbrains, Яндекс, Otus, SkillFactory.
Небольшая подсказка как обозначаются основные числовые множества. Часто приходится, читая всякие алгоритмы, разбираться с математикой, и помимо формул, часто речь идёт о множествах чисел и есть ещё операции над множествами.
Обозначения наиболее часто используемых числовых множеств:
- N – множество всех натуральных чисел;
- Z – множество целых чисел;
- Q – множество рациональных чисел;
- J или I или P или R∖Q или R−Q (стандартного обозначения нет) – множество иррациональных чисел;
- R – множество действительных (вещественных) чисел;
- C – множество комплексных чисел.
Натуральные числа (N) – числа, возникающие естественным образом при счёте (например, 1, 2, 3, 4, 5…).
N0 – расширенный ряд натуральных чисел, включающий нуль.
Целые числа (Z) – включают в себя натуральные числа, числа противоположные натуральным (т. е. с отрицательным знаком) и ноль (если он по определению ещё не включен в расширенный ряд натуральных).
Иногда встречаются обозначения вида:
Z+ – целые положительные числа
Z— – целые отрицательные числа
Рациональные числа (Q) – числа, которые можно представить дробью m/n, где m — целое число, а n — натуральное. Рациональные числа могут быть представлены в виде конечных и бесконечных периодических десятичных дробей. Т. е. еще раз следует отметить, что бесконечная периодическая десятичная дробь являются рациональным числом т. к. может быть представлена обыкновенной дробью.
Иррациональные числа (J или I или R∖Q или R−Q, стандартного обозначения нет) – вещественное число, которое не является рациональным, то есть не может быть представлено в виде дроби m/n, где m — целое число, n — натуральное число.
Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.
Иррациональными числами часто являются корни из некоторых чисел, примеры иррациональных чисел:
√n – для любого натурального n, не являющегося точным квадратом;
ex – для любого рационального x ≠ 0;
ln x – для любого положительного рационального x ≠ 1;
Число ∏, а также числа ∏n – для любого целого n ≠ 0.
Действительные (вещественные) числа (R) – это рациональные и иррациональные числа (если кратко). Вещественные числа предназначены для измерения непрерывных величин, т. е. это просто шкала всех реальных чисел от -∞ до +∞
UPD
В связи с созданием форума Математика, этот топик перенесен туда.
Последний раз редактировалось Александр 18 сен 2017, 16:53, всего редактировалось 6 раз(а).
Содержание:
Множества
Понятие множества является одним из исходных понятий математики в том смысле, что его нельзя определить с помощью более простых, чем оно само, понятий. В повседневной жизни часто приходится рассматривать набор некоторых объектов как единое целое. Скажем, когда биолог изучает флору и фауну некоторой местности, он делит организмы на виды, а виды на семейства. При этом каждый вид рассматривается как единое целое, состоящее из организмов.
Множество может состоять из объектов различной природы. Например, вес реки Азии или все слова в словаре могут рассматриваться как множества.
Знаменитый немецкий математик Г. Кантор (1845 -1918) дал следующую описательную формулировку: «Множество есть совокупность, мыслимая как единое целое».
Объекты, составляющие множество, называются его элементами.
Обычно, для удобства, множество обозначается заглавными буквами латинского алфавита, например, А, В, С,…, а его элементы — прописными.
Множество А, состоящее из элементов а, b, с, … , будем записывать в виде A = {а, b, с,…}. Отметим, что записи {6, 11} , {11, 6} , {11, 6, 6, 11} означают одно и то же множество.
При ведем примеры множеств. Например, множество {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} — множество цифр десятичной системы счисления ,
То, что х является элементом множества А, будем обозначать как 

Например, для множества 

Если число элементов, составляющих множество, конечно, то такое множество будем называть конечным, в противном случае бесконечным. Например, множество 

В качестве еще одного примера бесконечного множества можно привести множество всех натуральных чисел, не меньших 13.
Обозначим через 
в силу того, что число всех его элементов равно 6. Множество, не содержащее ни одного элемента, называется пустым и обозначается так: 0
Пустое множество 0 считается конечным и для него я(0)= 0.
Для бесконечного множества А принято, что
Если вес элементы множества А также принадлежат множеству В, то говорят, что множество А — подмножество множества В и обозначают так: 
Во множестве {а} лежат два подмножества:
Множество {а, b} имеет четыре подмножества:

Если множество А имеет элементы, не принадлежащие В, то множество А не может быть подмножеством В. Этот факт мы будем записывать так:
Например, пусть А={ 1, 2, 3, 4}, В={2, 3, 4, 5}. Так как 
Если 
Например, множество всех правильных треугольников совпадает со множеством всевозможных треугольников, у которых все углы равны. Причина этого заключается в том, что у любого правильного треугольника
все углы равны, и, наоборот, если у треугольника все углы равны, то он является правильным.
Напомним основные числовые множества:


Множество действительных чисел
Объединение и пересечение множеств
1) Множество, состоящее из элементов, принадлежащих хотя бы одному из множеств А, В, называется объединением множеств.
Объединение множеств А, В обозначается через
Например, если
2) Множество, состоящее из элементов, принадлежащих обоим множествам А, В, называется пересечением множеств. Пересечение множеств А. В обозначается через
Например, если
Множества, не имеющие общих элементов, называются не пересекающимися.
Пример:
Для множеств
a) определите, какие из утверждений верны, а какие неверны:
b) найдите множества:
c) определите, какие из утверждений верны, а какие неверны:
Решение:
а) Так как число 4 не является элементом множества М, то утверждение 

b). 


c) Утверждение 

В некоторых случаях для задания множества указывается характеристическое свойство, истинное для всех элементов множества и ложное для остальных. Если мы кратко запишем тот факт, что элемент х удовлетворяет свойству Р как Р(х), то множество всех элементов, удовлетворяющих свойству Р обозначается так:
Например, запись 
На числовом луче это множество изображается так:
Видно, что 
Аналогично запись 
На числовом луче это множество изображается так:
Видно, что, 
Пример:
a) Как читается эта запись?
b) Выпишите последовательно элементы этого множества.
c) Найдите
Решение:
a) «Множество всех целых чисел, больших 3 и меньших или равных 10»;
b).
c).
Рассмотрим множество всех натуральных чисел, больших или равных 1, но меньших или равных 8. Пусть нас интересуют только его подмножества.
В таком случае, обычно вводится множество 
Множество А содержащее все элементы универсального множества U, не являющиеся элементами множества А, называется дополнением множества А.
Например, если 

Очевидно, что
т.е. множества А и А’ не имеют общих элементов, а также вес составляющие их элементы образуют в совокупности универсальное множество U.
Пример:
Пусть U универсальное множество. Найдите С’, если:
а) С = {все четные числа); b).
Решение:

Пример:
Пусть

Решение:
Пример:
Пусть 
b) найдите 
d) проверьте выполнение равенства
Решение:
Значит, 
Диаграммы Венна
Например, на этом рисунке изображено множество А, лежащее внутри универсального множества 
Если 

Мы знаем, что если 
Все элементы пересечения 
Все элементы объединения A U В принадлежат либо А, либо В, либо обоим одновременно. Значит, на соответствующей диаграмме Венна область, соответствующая множеству A U В, изображается следующим образом:
Пример:
Пусть 
Венна множества:
Решение:
Удобно на диаграмме Венна множества раскрашивать.
Например, на рисунке раскрашены множества А,
Высказывание
Высказывание — это повествовательное предложение, утверждающее что-либо о чем-либо, при этом непременно истинное или ложное. Вопросительные предложения, повествовательные предложения, описывающие личное отношение субъекта, например «Зеленый цвет приятен», не являются высказываниями. Отметим, что существуют высказывания, истинность или ложность которых не определяются однозначно.
Например, высказывание «Этот писатель родился в Ташкенте» может быть истинным по отношению к некоторым писателям и ложным по отношению к другим.
Пример:
Укажите, какие из предложений являются высказываниями. В случае, когда предложение является высказыванием, однозначно ли определяется его истинность — ложность?
а) 20:4=80; b) 25-8=200;
с) Где мой карандаш? d) У тебя глаза голубые.
Решение:
a) Это высказывание и оно ложно, так как 20:4=5;
b) это высказывание и оно истинно;
c) это вопросительное предложение и поэтому оно не является высказыванием;
d) это высказывание. Истинность-ложность его определяется неоднозначно, так как применительно к некоторым людям оно истинно, а к другим — ложно.
Мы будем обозначать высказывания буквами p,q,r … .
Например, р: во вторник прошел дождь; q: 20:4=5; r: х — четное число. Для построения нескольких сложных высказываний служат символы, называемые логическими связками: 


Рассмотрим их подробней.
Отрицание
Для высказывания р высказывание вида «не р» или «неверно, что р» называется отрицанием высказывания р и обозначается как
Например,
отрицанием высказывания
р: Во вторник шел дождь
является высказывание

Отрицанием высказывания
р: У Мадины глаза голубые
является высказывание

Ясно, что если р истинно, то 



1 Буквы Т и F — начальные буквы английских слов «true» (истинно) и «false» (ложно) соответственно.
Пример:
Составьте отрицание высказывания:
Решение:
Удобно находить отрицание высказывания с помощью диаграмм Венна. Например, рассмотрим высказывание:
р: «Число х больше, чем 10 «.
На диаграмме U — множество всех чисел, множество Р — множество истинности высказывания р, то есть множество всех х , для которых это высказывание истинно. Множество Р’ является множеством истинности отрицания 
Пример:
На множестве 
Решение:
Пусть множество Р — множество истинности высказывания р, а множество Р’ — множество высказывания 
Конъюнкция
Высказывание, образованное из двух высказываний с помощью связки «и», называется конъюнкцией заданных высказываний.
Конъюнкция высказываний р, q обозначается через
Например, конъюнкция высказываний,
р: Эльдар на завтрак ел плов;
q: Эльдар на завтрак ел самсу.
имеет вид:

Видно, что высказывание 




Первый и второй столбцы таблицы составлены из всех возможных значений истинности высказываний р, q.
На диаграмме Р — множество истинности высказывания р, Q — множество истинности высказывания q , а множество истинности высказывания 

Дизъюнкция
Высказывание, образованное из двух высказываний с помощью связки «или», называется дизъюнкцией заданных высказываний.
Дизъюнкция высказываний р, q обозначается через
Например, дизъюнкция высказываний,
р: Эльдар сегодня посетит библиотеку,
q: Эльдар сегодня посетит театр .
имеет вид:

Высказывание
Высказывание 
Дизъюнкция имеет следующую таблицу истинности:
pVq истинно, когда хотя бы одно из высказываний р, q истинно.
pVq ложно, когда оба высказывания p, q ложны.
На диаграмме Р — множество истинности высказывания р, Q — множество истинности высказывания q, а множество истинности высказывания pVq является множество 
Логическая равносильность
Составим, используя буквы и символы логических связок таких, как отрицание, конъюнкция и дизъюнкция, символическую запись более сложных высказываний естественного языка, при этом не обращая внимания на их истинность или ложность.
Объединяя таблицы истинности для отрицания, конъюнкции и дизъюнкции, можно составить таблицы истинности для более сложных высказываний:
Пример 1. Составьте таблицу истинности высказывания
1 шаг.
Выпишем таблицу и заполним сначала первый и второй столбец всеми возможными значениями истинности р и q:
2 шаг. Учитывая значения истинности q, заполним третий столбец значениями истинности
3 шаг Учитывая значения истинности p и 
Высказывание, являющееся истинным всегда, называется законом логики или тавтологией.
То, что высказывание является законом логики, можно доказать при помощи таблицы истинности.
Пример:
Докажите, что высказывание
Заполним таблицу истинности:
Решение:
Видно, что высказывание 
Если для двух высказываний соответствующие их значениям истинности столбцы одинаковы, то эти высказывания называются логически равносильными.
Пример:
Докажите, что следующие высказывания являются логически равносильными
Решение:
Составим таблицы истинности для высказываний
Так как у высказываний
Мы будем обозначать этот факт так:
Импликация
Высказывание, образуемое из двух высказываний с помощью связки «если …., то …» называется импликацией этих двух высказываний.
Импликация «Если р, то q» обозначается как
При этом высказывание р называется достаточным условием для q, а высказывание q — необходимым условием для р.
высказывание q — необходимым условием для р.
Рассмотрим , например, высказывания
р: У Сардора есть телевизор; q: Сардор будет смотреть кино.
Тогда высказывание 
Если у Сардора есть телевизор, то он будет смотреть кино.
Точно также
Для того, чтобы Сардор смотрел кино достаточно, чтобы у него был телевизор.
Можно заметить, что высказывание 

Пример:
Рассмотрим высказывания
р: «Анора часто смотрит кинофильмы»;
q: «Барно часто смотрит кинофильмы
r: «Барно не сдаст экзамен»;
s: «произойдет чудо».
Имеем: 1. 
2. 
3. 
4. 
5. 
Эквиваленция
Высказывание вида 
Запись 
Пример:
р: х — четно, q: последняя цифра числа х четна. Выразите высказывание
Решение:
Рассмотрим высказывание,

Тогда запись 

Видно, что высказывание 
Конверсия
Конверсией высказывания 
Конверсия имеет следующую таблицу истинности:
Пример:
Рассмотрим высказывания
р: треугольник равнобедренный,
q: два угла треугольника равны.
Выразите на естественном языке высказывание 
Решение:


Инверсия
Инверсией высказывания

Эта таблица совпадает с таблицей истинности высказывания 
Контрапозиция
Контрапозицией высказывания 

Эта таблица совпадает с таблицей истинности высказывания 
Пример:
Рассмотрим высказывание. Все учителя живут поблизости от школы». Составим его контрапозицию.
Решение:
Данное высказывание можно сформулировать так: «Если этот человек — учитель, что он живет поблизости от школы».
Это предложение имеет форму 
р: этот человек — учитель,
q: этот человек живет поблизости от школы.
Контрапозиция 
«Если этот человек не живет поблизости от школы, то он не является учителем.
Пример:
Рассмотрим высказывания:
р: Самандар находится в библиотеке, q: Самандар читает книгу.
Составьте имликацию, конверсию, инверсию и контрапозицию
Решение:
Отметим, что импликация и конверсия логически не равносильны, так как , например , Самандар может читать книгу и в классе.
Предикаты и кванторы
В некоторых предложениях участвуют переменные, при этом подставив вместо них конкретные значения, получим высказывания. Такие предложения называются предикатами.
Пример:
Пусть задан предикат 
Решение:
В некоторых предикатах переменную можно определить исходя из контекста.
Например, в предложениях «Этот писатель родился в Ташкенте» и «Он родился в Ташкенте» переменными являются словосочетание». «Этот писатель» и местоимение «он» соответственно. Если вместо переменной подставить значение «Абдулла Кадыри», получим истинное высказывание «Абдулла Кадыри родился в Ташкенте». Если вместо переменной подставить значение «Шекспир», получим ложное высказывание «Шекспир родился в Ташкенте».
Обозначив переменную через х, вышеуказанные предложения можно записать в виде «х родился в Ташкенте».
В предикате могут участвовать одно или несколько переменных. В зависимости от количества переменных, участвующих в предикате, будем обозначать его так:
Используя совместно с предикатом специальные символы 

Например, новое высказывание вида 

К примеру, рассмотрим предикат Р(х): «х родился в Самарканде». Тогда высказывание 

Приведем примеры, в которых можно определить истинность-ложность высказываний вида
Пример:
Пусть
Решение:
Проверим:
Значит, высказывание, 
Следует отметить, что для того, чтобы доказать ложность высказывания 

Действительно, при
Любое значениех, которое показывает, что высказывание 
Пример:
Докажите истинность высказывания
Решение:
Так как 

Если же 

Приведем два важных закона логики, связанных с операцией отрицания:
Для понимания смысла этих законов приведем пример.
Если запись 

не существует отличников», тогда запись означает логически равносильное ему утверждение «Все мои одноклассники не являются отличниками».
Точно также, формула 

Очевидно, что с помощью кванторов и предиката 
из которых, в свою очередь, можно построить всказывания вида:
В то время, когда смысл высказываний



Рассмотрим, например, предикат Р(х,у): человек у — отец моего одноклассника х.
В этом случае

Аналогично можно показать, что высказывания,
С помощью кванторов и предикатов можно построить и другие законы логики. Например, высказывание «Если все вороны черные, то ни одна не черная птица не является вороной «, служит примером закона логики вида:
Законы правильного мышления (аргументации)
В процессе познания действительности мы приобретаем новые знания. Некоторые из них непосредственно, в результате воздействия предметов внешнего мира на органы чувств. Но большую часть знаний мы получаем пу тем выведения новых знаний из знаний уже имеющихся. Чтобы научиться стройно и последовательно излагать свои мысли, правильно делать выводы, необходимо пользоваться законами логики. Определенность, непротиворечивость, последовательность и обоснованность являются обязательными качествами правильного мышления. Законы логики устанавливают необходимые связи в последовательном ряду мыслей и умозаключений.
Суждение представляет собой форму мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях. Например, в суждении «Железо-металл» утверждается связь между предметом (железо) и его признаком (являться металлом). В суждении «Яйцо появилось раньше курицы » утверждается связь между двумя предметами (яйцо и курица). Так как суждение выражается в форме повествовательного предложения, причем суждение может быть либо истинным, либо ложным, то каждое суждение имеет форму высказывания.
Умозаключение- это такая форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по определенным правилам получается некоторое суждение, называемое заключением или выводом.
Пусть S-совокупность исходных суждений (посылок), Р- заключение. В этом случае, умозаключение имеет логическую форму вида 

Если Собир занимается спортом, то будет здоров. Собир занимается спортом. Следовательно, Собир будет здоров.
Найдем логическую форму этого умозаключения.
Пусть р: Собир занимается спортом; q: Собир будет здоров. Тогда умозаключение имеет вид:
Так следствие вытекает из суждений 
Составим соответствующую таблицу истинности:
Получили тавтологию. Это показывает правильность умозаключения, то есть мы из данного основания получили правильное следствие.
Пример:
Покажите неправильность умозаключения:
Если треугольник имеет три стороны, то 2+4-7.
Следовательно, треугольник имеет три стороны.
Решение:
Найдем логическую форму этого умозаключения.
р: треугольник имеет три стороны.
q: 2+4=7
Имеем:
Так как здесь 
Составим соответствующую таблицу истинности:
В результате мы не получили тавтологию. Это показывает неверность умозаключения, то есть мы из данного основания не получили правильное следствие.
Ниже мы приведем некоторые правила правильных умозаключений:
Доказательство верности вышеуказанных умозаключений мы оставляем учащимся в качестве упражнения.
Софизмы и парадоксы

Одним из первых соответствующие примеры привел математик Зенон, живший в 5 веке до нашей эры в Древней Греции. Например, Зенон «доказал», что быстроногий Ахиллес никогда не догонит неторопливую черепаху, если в начале движения она находится впереди Ахиллеса. Приведем его рассуждения. Допустим, Ахиллес бежит в 10 раз быстрее, чем черепаха, и находи тся позади нее на расстоянии в 100 шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползет 10 шагов.
За то время, за которое Ахиллес пробежит 10 шагов, черепаха проползет еще 1 шаг, и так далее. Процесс будет длиться до бесконечности, Ахиллес так никогда и не догонит черепаху.
Примеры Зенона связаны с понятиями бесконечности и движения, которые имели большое значение в развитии физики и математики.
Некоторые софизмы обсуждали в переписке между собой наши великие соотечественники Беруни и Ибн Сино, а также они встречаются в произведениях Фараби.
Приведем простейшие примеры на софизмы и обсудим их.
Пример:
Куда пропали 1000 руб? Три друга отобедали в кафе, после чего официант дал им счет на 25000 руб. Каждый из трех друзей достал по купюре в 10000 руб, в итоге они отдали официанту 30000 руб. На сдачу официант отдал 5000 руб более мелкими купюрами. Друзья взяли по 1000 руб себе, а оставшиеся 2000 руб отдали другу на такси. Один из друзей стал рассуждать: «Каждый из нас потратил по 9000 руб, что в итоге составляет 27000 руб. Затем 2000 руб отдали на такси, значит, в итоге получается 29000 руб. Куда пропали 1000 руб?»
Решение:
Основной «подвох» в этом рассуждении заключается в том, что 2 От древнегреческого уловка.
расчеты сделаны неверно. Действительно, трое друзей сложились по 9000 руб и получили 27000 руб. Из этих денег 25000 руб заплатили за обед, а 2000 руб заплатили за такси. Следовательно, общая трата составила 27000 руб. Тс 2000 руб находятся внутри 27000 руб.
Пример:

2(10—8—2)=25—20—5
2-2-(5—4—1)=5-(5—4—1)
Сократим левую и правую часть последнего равенства на общий делитель (5-4-1). В итоге получим равенство 2-2=5.
Основной «подвох» в этом рассуждении заключается в том, что мы поделили обе части равенства 2-2-(5-4-1)=5-(5-4-1) на нуль.

Парадоксы, обычно, возникают в теориях, логические основы которых не определены полно.
Пример:
Парадокс лжеца. Рассмотрим высказывание «То, что я утверждаю сейчас — ложь».
Если это высказывание истинно, значит, исходя из его содержания, верно то, что данное высказывание -ложь. Но если оно -ложь, тогда неверно то, что оно утверждает, то есть утверждение о ложности данного высказывания неверно, значит, данное высказывание истинно. Таким образом, цепочка рассуждений возвращается в начало.
Пример:
Прилагательное русского языка назовем рефлексивным, если оно обладает свойством, которое определяет.
Например, прилагательное «русский» — рефлексивное, а прилагательное «английский» — нерефлексивное, прилагательное «трехсложный» — рефлексивное (это слово состоит из трех слогов), а прилагательное «четырехсложный» — нерефлсксивное (состоит из пяти слогов). Вроде бы ничто не мешает нам определить множество {все рефлексивные прилагательные}. Но давайте рассмотрим прилагательное «нерефлексивный». Оно рефлексивное или нет?
Можно заявить, что прилагательное «нерефлексивный» не является ни рефлексивным, ни нерефлексивным. Действительно, если это слово рефлексивное, то по своему смыслу, оно нерефлексивное. Если же это от древнегреческого 
Пример:
Два взаимно пересекающихся множества А, В делят универсальное множество на четыре части:
Следовательно, число элементов универсального множества является суммой количеств элементов этих частей.
На следующей диаграмме мы заключили известные количества элементов частей универсального множества в круглые скобки:
Здесь, например, обоим множествам А, В принадлежат 4 элемента, а 3 элемента не принадлежат ни одному из них.
Так как произвольный элемент множества U, принадлежит только одному из этих 4 частей , то число элементов множества U равно 7+4+6+3=20.
Пример:
Используя рисунок, найдите число элементов следующих множеств:
d). Множество элементов, принадлежащих Р, но не принадлежащих Q
е) Множество элементов, принадлежащих Q, но не принадлежащих Р;
f) Множество элементов, не принадлежащих ни Р, ни Q.
Пример:
Если
a) Найдите
b) Сколько элементов содержит множество элементов, принадлежащих А, но не принадлежащих В‘?
Решение:
Составим диаграмму Венна:
Из того, что 
Из диаграммы получаем следующее:
b) Число элементов, принадлежащих А, но не принадлежащих В, равно а= 8
Пример:
Из 27 учеников, посещающих спортивную секцию, 19 имеют темные волосы, 14 — черные глаза, а 11 имеют и темные волосы и черные глаза одновременно.
a) Изобразите эту информацию с помощью диаграммы Венна. Объясните ситуацию.
b) Найдите число учеников, которые I имеют или темные волосы или черные глаза; II темноволосых, но не черноглазых?
Решение:
а) Пусть Qs — множество темноволосых, a Qk множество черноглазых учеников.
Изобразим ситуацию на диаграмме:
b) Используя диаграмму, определим следующее:
I количество учеников, имеющих или темные волосы или черные глаза:
II количество темноволосых учеников, не обладающих черными глазами:
Пример:
На футбольном соревновании город представляют три команды А, В и С. 20 процентов населения города болеют за команду И, 24 процента — за В, 28 процентов — за С. 4 процента жителей болеют и за С и за И, 5 процент, жителей болеют и за В и за А, а 6 процентов жителей болеют и за В и за С. Кроме того, 1 процент населения болеет за все три команды.
Сколько процентов жителей:
a) болеют только за команду А;
b) болеют и за А и за В, но не болеют за команду С;
c) не болеют ни за одну из команд?
Решение:
Заполним для начала соответствующую диаграмму Венна.
а= 1, так как 1 процент жителей болеет за все команды.
a+d=4, так как 4 процента жителей болеет и за И и за В.
а+b=6, так как 6 процентов жителей болеют и за В и за С а+с=5, так как 5 процентов жителей болеют
—-
Множества
Понятие множества принадлежит к числу первичных, не определяемых через более простые. Под множеством понимается совокупность некоторых объектов, объединенных по определенному признаку. Объекты, которые образуют множество, называются элементами, или точками, этого множества.
Множества обозначаются прописными буквами, а их элементы — строчными. Если 

Например, 
Множество, не содержащее ни одного элемента, называется пустым и обозначается 

Два множества называются равными, если они состоят из одних и тех же элементов. Например, если 
множества равны.
Объединением двух множеств А и В называется множество С, состоящее из элементов, принадлежащих хотя бы одному из данных множеств, т.е.
Пересечением двух множеств А и В называется множество D, состоящее из всех элементов, одновременно принадлежащих каждому из данных множеств А и В, т.е.
Разностью двух множеств А и В называется множество E, состоящее из всех элементов множества А, которые не принадлежат множеству В, т.е.
Пример 1. Даны множества 
Решение. Объединение двух данных множеств — 


Множества, элементами которых являются действительные числа, называются числовыми.
Обозначения множеств:



R — множество действительных чисел;
I — множество иррациональных чисел;

Геометрически, каждому действительному числу соответствует точка числовой оси, и наоборот, каждой точке прямой — определенное действительное число.
Множество X, элементы которого удовлетворяют: неравенству 




В дальнейшем все указанные множества мы объединяем термином промежуток X.
——
Множества и операции над ними
Под множеством будем понимать совокупность объектов, наделенных определенными свойствами. Эти свойства должны полностью определять данное множество, то есть являться признаками, по которым относительно любого объекта можно решить, принадлежит он данному множеству или нет. Синонимами термина «множество» являются термины «класс «семейство «совокупность». Объекты, из которых состоит данное множество, называют его элементами.
Чаще всего множество обозначают большими буквами латинского или греческого алфавита, а его элементы — малыми буквами. Если a — элемент множества A, то пишут a ∈ A (читают: «a принадлежит множеству A») или A 3 a (множество A содержит элемент a). Запись a ∈/ A означает, что a не является элементом множества A.
Множество обычно записывают одним из следующих способов:
A = {a , . . . , 
Первая запись означает, что множество A состоит из элементов a, . . . , 

Определение 1.1. Множества A и B называются равными (или совпадающими), если они состоят из одних и тех же элементов, то есть x ∈ A тогда и только тогда, когда x ∈ B .
Коротко это высказывание записывают: A = B, а отрицание этого утверждения — в виде: 
Определение 1.2. Если каждый элемент множества A является элементом множества B , то говорят, что A есть подмножество множества B (или A есть часть B ), и пишут A ⊂ B (читается: «Множество A содержится в множестве B») или B ⊃ A (читается: «Множестоо B содержит множество A»).
Отметим следующие свойства отношения включения:
1. A ⊂ A, то есть всякое множество есть подмножество себя самого;
2. Если A ⊂ B и B ⊂ C, то A ⊂ C (отношение включения транзитивно);
3. Если A ⊂ B и B ⊂ A, то A = B.
Удобно считать, что 
Пусть A и B — некоторые подмножества множества E. Введем наиболее простые операции с множествами.
Определение 1.3. Объединением множеств A и B называется множество, обозначаемое A ∪ B и состоящее из всех элементов, которые принадлежат или множеству A или B .
Таким образом, x ∈ A ∪ B , если x ∈ A, но x 


Определение 1.4. Пересечением множеств A и B называют множество, обозначаемое A∩B и состоящее из всех элементов, каждый из которых принадлежит и A и B .
Если множества A и B не имеют общих точек, то A ∩ B =


Определение 1.5. Разностью множеств A и B называют множество, обозначаемое A B и состоящее из всех элементов множества A, которые не принадлежат множеству B .
Если A ⊂ B , то часто множество A B называют дополнением множества B до A. По определению A A = 

Пример 1.1. Пусть A = {1,3,4,8, 15} ,B = {1,2,7,8, 12}. Тогда
A∪B = {1,2,3,4,7,8,12,15}, A∩B = {1, 8},
AB = {3, 4, 15}, BA= {2, 7, 12}
Определение 1.6. Набор, состоящий из двух элементов x1 и x2, называют упорядоченным, если известно, какой из этих элементов является первым, а какой — вторым. Такой упорядоченный набор называют упорядоченной парой и обозначают (x1, x2). Элементы x1 , x2 называют, соответственно, первой и второй координатами пары (x1, x2). Пары (x1, x2) и (y1 , y2) называют совпадающими, если x1 = y1 и x2 = y2 .
Определение 1.7. Декартовым (или, по-другому, прямым) произведением множеств A и B называют множество упорядоченных пар (x, y), где первый элемент x является элементом множества A, а второй y — элементом множества B . Это множество обозначают символом A × B .
Таким образом, A × B = { (x, y) | x ∈ A, y ∈ B}. Но, вообще говоря, A × B
Пусть A и B — числовые отрезки, помещенные на взаимно перпендикулярных осях плоскости. Упорядоченная пара (x, y) — это точка пересечения перпендикуляров, восстановленных в точках x ∈ A и y ∈ B . Произведением A × B является прямоугольник.
Логическая символика
В последующем, как и в большинстве математических текстов используется ряд специальных символов, многие из которых вводятся по мере надобности. Применяются распространенные символы математической логики 

Запись A 
Запись A 
Запись «∃ x ∈ X » означает: существует элемент x из множества X .
Запись «∀ x ∈ X » означает: для любого элемента x из множества X или каков бы ни был элемент x из множества X .
Часто в символьной записи математических утверждений используют символ «:» или эквивалентный ему символ «| которые читают: «такой, что». В частности, запись «∃ x ∈ X : x2 — 1 = 0″ означает: существует такой элемент x в множестве X , что x2 — 1 = 0.
- Заказать решение задач по высшей математике
Множества
Множества и операции над ними
Понятие множества и его элементов
Элемент 
Элемент 

В множестве нет элементов 
Множество можно представить как совокупность некоторых объектов, объединенных по определенному признаку. В математике множество — одно из основных неопределяемых понятий.
Каждый объект, принадлежащий множеству 
Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается
Подмножество
Если каждый элемент множества 







Равенство множеств
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества
Пересечение множеств
Пересечением множеств 



Объединение множеств
Объединением множеств 




Разность множеств
Разностью множеств 



Дополнение множеств
Если все рассматриваемые множества являются подмножествами некоторого универсального множества 





Объяснение и обоснование:
Понятие множества
Одним из основных понятий, которые используются в математике, является понятие множества. Для него не дается определения. Можно пояснить, что множеством называют произвольную совокупность объектов, а сами объекты — элементами данного множества. Так, можно говорить о множестве учеников в классе (элементы — ученики), множестве дней недели (элементы — дни недели), множестве натуральных делителей числа 6 (элементы — числа 1, 2, 3, 6) и т. д. В курсах алгебры и алгебры и начал анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.
Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество 




Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.
Например, множество простых делителей числа 1 — пустое множество.
Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом 







Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило — характеристическое свойство, которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, множество 




В общем виде запись множества с помощью характеристического свойства можно обозначить так: 




Равенство множеств
Пусть 




Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.
Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, 
Подмножество
Если каждый элемент множества 



Это записывают следующим образом:
Например, 


Полагают, что всегда 
Иногда вместо записи 




Сопоставим определение равенства множеств с определением подмножества. Если множества 











Таким образом, два множества равны, если каждое из них является подмножеством другого.
Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера—Венна). Например, рисунок 1 иллюстрирует определение подмножества, а рисунок 2 — отношения между множествами 
Операции над множествами
Над множествами можно выполнять определенные действия: пересечение, объединение, находить разность. Дадим определение этих операций и проиллюстрируем их с помощью кругов Эйлера—Венна.
Пересечением множеств 




Пересечение множеств обозначают знаком 
Например, если 

Объединением множеств 




Объединение множеств обозначают знаком 
Например, для множеств 




Разностью множеств 



Разность множеств обозначают знаком 
Например, если
Если 



Например, если обозначить множество всех иррациональных чисел через 




Если все множества, которые мы рассматриваем, являются подмножествами некоторого так называемого универсального множества 





Дополнение множества 



Например, если 


Числовые множества. Множество действительных чисел
Числовые множества:
Действительные числа
Числа, которые можно представить в виде бесконечной десятичной дроби
Рациональные числа
Можно представить в виде несократимой дроби 

Иррациональные числа
Нельзя представить в виде несократимой дроби 


Целые числа
Включают натуральные числа, числа, противоположные им, и число нуль
Дробные числа
Числа, состоящие из целого числа частей единицы
(

Натуральные числа 
Для школьного курса математики натуральное число — основное не определяемое понятие
Число 0
Такое число, при сложение с которым любое число не изменяется
Целые отрицательные числа
Числа, противоположные натуральным
Модуль действительного числа и его свойства
Определение:
Модулем положительного числа называется само это число, модулем отрицательного числа называется число, противоположное ему, модуль нуля равен нулю
Геометрический смысл модуля
На координатной прямой модуль — это расстояние от начала координат до точки, изображающей это число.
Модуль разности двух чисел 



Свойства
1. 
2. 
3. 

4. При 
5. При
6. 
7. 
8. 
9.
Модуль суммы не превышает суммы модулей слагаемых
10.
Объяснение и обоснование:
Числовые множества
В курсе математики вы встречались с разными числами: натуральными, целыми, рациональными, иррациональными, действительными. Представление о числах у человечества складывалось постепенно, под воздействием требований практики. Например, натуральные числа появились в связи с необходимостью подсчета предметов. Но для того чтобы дать ответ на вопрос «Сколько спичек в пустой коробке из-под спичек?», множества натуральных чисел 






Натуральные числа, числа, противоположные натуральным, и число нуль составляют множество 
Измерение величин привело к необходимости расширения множества целых чисел и введения рациональных чисел. Например, средняя многолетняя температура воздуха в январе в г. Харькове — 

Таким образом, выбирая какую-либо единицу измерения, мы получаем числовое значение величин, которое может выражаться с помощью разных рациональных чисел — целых и дробных, положительных и отрицательных.
Целые и дробные числа составляют множество 
Любое рациональное число можно записать в виде дроби 



Рациональное число может быть записано разными дробями. Например,
Как видно из приведенных примеров, среди дробей, которые изображают данное рациональное число, всегда есть единственная несократимая дробь (для целых чисел — это дробь, знаменатель которой равен 1).
Обратим внимание, что рациональное число, записанное в виде дроби 


Договоримся, что конечную десятичную дробь можно изображать в виде бесконечной, у которой после последнего десятичного знака, отличного от нуля, на месте следующих десятичных знаков записываются нули, например, 
Целые числа также договоримся записывать в виде бесконечной десятичной дроби, у которой справа от запятой на месте десятичных знаков стоят нули, например 

Таким образом, каждое рациональное число может быть записано в виде бесконечной периодической десятичной дроби и наоборот, каждая бесконечная периодическая дробь задает рациональное число.
Обратим внимание, что любая периодическая десятичная дробь с периодом девять равна бесконечной десятичной дроби с периодом нуль, у которой десятичный разряд, предшествующий периоду, увеличен на единицу по сравнению с разрядом первой дроби. Например, бесконечные периодические дроби 





В дальнейшем, записывая рациональные числа с помощью бесконечных периодических десятичных дробей, договоримся исключить из рассмотрения бесконечные периодические дроби, период которых равен девяти.
Каждое рациональное число можно изобразить точкой на координатной прямой (то есть прямой, на которой выбраны начало отсчета, положительное направление и единица измерения). Например, на рисунке изображены несколько рациональных чисел 
Однако на координатной прямой есть точки, изображающие числа, которые не являются рациональными. Например, из курса алгебры известно, что число 








Рациональные и иррациональные числа составляют множество действительных чисел 
Каждое действительное число может быть записано в виде бесконечной десятичной дроби: рациональные числа — в виде бесконечной периодической десятичной дроби, а иррациональные — в виде бесконечной непериодической десятичной дроби.
Напомним, что для сравнения действительных чисел и выполнения действий над ними (в случае, когда хотя бы одно из них не является рациональным) используются приближенные значения этих чисел. В частности, для сравнения двух действительных чисел последовательно рассматриваем их приближенные значения с недостатком с точностью до целых, десятых, сотых и т. д. до тех пор, пока не получим, что какое-то приближенное значение одного числа больше соответствующего приближенного значения второго. Тогда то число, у которого приближенное значение больше, и считается большим. Например, если



Для выполнения сложения или умножения рассмотренных чисел 

Как видим,
В курсе математического анализа доказывается, что в случае, когда приближенные значения чисел 




Модуль действительного числа и его свойства
Напомним определение модуля.
Модулем положительного числа называется само это число, модулем отрицательного числа — число, противоположное ему, модуль нуля равен нулю.
Это определение можно коротко записать несколькими способами. а при а > 0,



При необходимости мы будем пользоваться любой из этих записей определения модуля. Для нахождения 

На координатной прямой модуль числа — это расстояние от начала координат до точки, изображающей это число.
Действительно, если 
Если 
Модуль разности двух чисел 



Для доказательства можно воспользоваться тем, что при параллельном переносе вдоль оси координат на 










При параллельном переносе вдоль оси 












Используя определение модуля и его геометрический смысл, можно обосновать свойства модуля, приведенные в таблице 2.
Например, учитывая, что 


то есть модуль любого числа является неотрицательным числом.
Учитывая, что точки 


это означает, что модули противоположных чисел равны.
Если 



то есть каждое число не превышает его модуль.
Если в последнее неравенство вместо 






При 







при 
Обратим внимание, что последнее утверждение справедливо и при 

Аналогично при 




то есть в этом случае 







при
Свойства модуля произведения и модуля дроби фиксируют известные правила действий над числами с одинаковыми и разными знаками:
модуль произведения равен произведению модулей множителей, то есть
модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю), то есть
Формулу для нахождения модуля произведения можно обобщить для случая нескольких множителей

Если в формуле (3) взять 
Используя последнюю формулу справа налево при 





запишем неравенство (1) для чисел 

Складывая почленно эти неравенства, получаем
Учитывая неравенство (2), имеем

то есть модуль суммы не превышает суммы модулей слагаемых. Если в неравенстве (4) заменить 


Если записать число 



Если в неравенстве (6) заменить 



то есть модуль суммы двух чисел не меньше разности их модулей.
Меняя местами буквы 



Полученные неравенства (4)-(8) можно коротко записать так:
Примеры решения задач:
Пример №402
Докажите, что сумма, разность, произведение, натуральная степень и частное (если делитель не равен нулю) двух рациональных чисел всегда является рациональным числом.
Решение:
► Пусть заданы два рациональных числа 





где 

Комментарий:
Любое рациональное число может быть записано как дробь 


Чтобы доказать утверждение задачи, достаточно доказать, что сумма, разность, произведение и частное двух дробей вида 
Пример №403
Докажите, что для любого натурального числа 

Комментарий:
Для доказательства утверждения задачи можно использовать метод от противного: предположить, что заданное положительное число является рациональным ненатуральным (то есть дробью), и получить противоречие с условием или с каким-либо известным фактом.
Записывая 

Решение:
► Допустим, что 









Следовательно, у натуральных множителей, которые стоят в числителе и знаменателе этой дроби, должен быть общий натуральный делитель, отличный от 1. Но в числителе стоят только множители 





Например, поскольку числа 




Пример №404
Докажите, что 
Решение:
► Допустим, что число 


Следовательно,
Но правая часть этого равенства — рациональное число (поскольку по предположению 

Комментарий:
Для доказательства утверждения задачи можно использовать метод «от противного» — допустить, что заданное число является рациональным, и получить противоречие с каким-либо известным фактом, например с тем, что 
При анализе полученных выражений используем результат задачи 1: если число 


Заметим, что знаменатель полученной дроби
Пример №405
Решите уравнение
Решение
I способ
►
Ответ:
Комментарий:
Заданное уравнение имеет вид 






II способ
Ответ:
Комментарий:
С геометрической точки зрения 







Пример №406
Решите неравенство
Решение:
Решая эти неравенства (рис. 15), получаем
Следовательно, 
Ответ:
Комментарий:
Заданное неравенство имеет вид 



Тогда неравенству 


- Рациональные уравнения
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Прямые и плоскости в пространстве
- Функции, их свойства и графики
- Параллельность в пространстве
- Перпендикулярность в пространстве
- Векторы и координаты в пространстве



































































































































































































































